Have a personal or library account? Click to login

The Application of Computer Image Analysis Based on Textural Features for the Identification of Barley Kernels Infected with Fungi of the Genus Fusarium

Open Access
|Oct 2018

References

  1. Arabi, M.I.E., Allaf, A.W., Jawhar, M. (2012). Thermoanalytical study of barley seeds infected with Pyrenophora graminea. Journal of Plant Biology Research, 1(3), 119-123.
  2. Barbedo, J.G.A., Tibola, C.S., Fernandes, J.M.C. (2015). Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosystems Engineering, 131, 65-76.10.1016/j.biosystemseng.2015.01.003
  3. Barbedo, J.G.A., Tibola, C.S., Lima, M.I.P. (2017). Deoxynivalenol screening in wheat kernels using hyperspectral imaging. Biosystems Engineering, 155, 24-32.10.1016/j.biosystemseng.2016.12.004
  4. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D. (2016). WEKA Manual for Version 3-9-1. The University of Waikato, Hamilton, New Zealand.
  5. Choudhary, R., Paliwal, J., Jayas, D.S. (2008). Classification of cereal grains using wavelet, morphological, color, and textural features of non-touching kernel images. Biosystems Engineering, 99, 330-337.10.1016/j.biosystemseng.2007.11.013
  6. Hossain, M.Z., Goto, T. (2015). A rapid determination of ergosterol in grains using gas chromatography– mass spectrometry method without derivatization. Food Analytical Methods, 8, 1021-1026.10.1007/s12161-014-9983-7
  7. Jin, F., Bai, G., Zhang, D., Dong, Y., Ma, L., Bockus, W., Dowell, F. (2014). Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. winter wheat. Phytopathology, 104(5), 472-478.
  8. Jin, Zh., Zhou, B., Gillespie, J., Gross, Th., Barr, J., Simsek, S., Brueggeman, R., Schwarz, P. (2018). Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control, 85, 6-10.10.1016/j.foodcont.2017.09.002
  9. Jirsa, O., Polišenska, I. (2011). Identification of Fusarium damaged wheat kernels using image analysis. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59, 125-130.10.11118/actaun201159050125
  10. Karlsson, I., Friberg, H., Kolseth, A.K., Steinberg, Ch., Persson, P. (2017). Agricultural factors affecting Fusarium communities in wheat kernels. International Journal of Food Microbiology, 252, 53-60.10.1016/j.ijfoodmicro.2017.04.011
  11. Legrand, F., Picot, A., Cobo-Díaz, J.F., Chen, W., Le Floch, G. (2017). Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biological Control, 113, 26-38.10.1016/j.biocontrol.2017.06.011
  12. Menesatti, P., Antonucci, F., Costa, C., Santori, A., Niciarelli, I., Infantino, A. (2009). Application of morphometric image analysis system to evaluate the incidence of Fusarium head blight wheat infected kernels. In: Proceedings of Bornimer Agrartechnische Berichte–Heft, Potsdam, Berlin, Germany, 157-161.
  13. Paliwal, J., Visen, N.S., Jayas, D.S., White, N.D.G. (2003). Cereal grain and dockage identification using machine vision. Biosystems Engineering, 85(1), 51-57.10.1016/S1537-5110(03)00034-5
  14. Ropelewska, E., Zapotoczny, P. (2018). Classification of Fusarium-infected and healthy wheat kernels based on features from hyperspectral images and flatbed scanner images: a comparative analysis. European Food Research and Technology, 244, 1453-1462.10.1007/s00217-018-3059-7
  15. Suproniene, S., Sakalauskas, S., Stumbriene, K., Zvirdauskiene, R., Svegzda, P. (2016). Variances in trichothecene chemotype distribution in Lithuanian wheat grain and within pure culture Fusarium graminearum isolated from the same grain samples. European Journal of Plant Pathology, 144, 371-381.10.1007/s10658-015-0774-9
  16. Symons, S.J., Clear, R.M., Bell, K., Butler, C. (2002). Identifying wheat and barley seed affected by Fusarium head blight. Grain biology bulletin No.2 (3rd ed.) Grain Research Laboratory, Canadian Grain Commission, Winnipeg: Canada.
  17. Szczypiński, P.M., Strzelecki, M., Materka, A., Klepaczko, A. (2009). MaZda – A software package for image texture analysis. Computer Methods and Programs in Biomedicine, 94(1), 66-76.10.1016/j.cmpb.2008.08.00518922598
  18. Zapotoczny, P. (2012). Application of image texture analysis for varietal classification of barley. International Agrophysics, 26, 81-90.10.2478/v10247-012-0012-z
DOI: https://doi.org/10.1515/agriceng-2018-0026 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 49 - 56
Submitted on: Jun 1, 2018
Accepted on: Aug 1, 2018
Published on: Oct 16, 2018
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Ewa Ropelewska, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.