Aggarwal, P.K. (1993). Agro-ecological zoning using crop growth simulation models: characterization of wheat environments in India. F.W.T. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems approaches for sustainable agricultural development, Kluwer Academic Publishers, Dordrecht, The Netherlis, 97-109.
Allen, P.S. (2003). When i how many? Hydrothermal models and the prediction of seed germination. New Phytologist 158, 1-9.10.1046/j.1469-8137.2003.00729.x
Alvarado, V, Bradford, K.J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25, 1061-1069.10.1046/j.1365-3040.2002.00894.x
Batlla, D, Kruk, BC, Benech-Arnold, RL. (2004). Modelling changes in dormancy in weed soil seed banks: Implications for the prediction of weed emergence. In: Benech-Arnold RL, Sanchez RA, eds. Hibook of seed physiology: applications to agriculture. New York, NY, USA: Food Product Press i the Haworth Reference Press, 245-270.
Bauer, M.C., Meyer, S.E., Allen, P.S. (1998). A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. Journal of Experimental Botany 49, 1235-1244.
Benech Arnold, R.L., Ghersa, C.M., Sanchez, R.A., Insausti, P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research, 30, 91-99.10.1111/j.1365-3180.1990.tb01691.x
Białobrzeski, I., Markowski, M., Bowszys, J., Myhan, R. (2005). Symulacyjny model zmian pola temperatury w silosie zbożowym. Inżynieria Rolnicza, 8(68), 23-30.
Birch, C.P.D. (1999). A New Generalized Logistic Sigmoid Growth Equation Compared with the Richards Growth Equation. Annals of Botany, 83, 713-723.10.1006/anbo.1999.0877
Boniecki, P., Niżewski, P. (2010). Modelowanie neuronowe w rozwiązywaniu wybranych problemów predykcyjnych inżynierii rolniczej. Journal of Research i Applications in Agricultural Engineering, 55(1), 16-19.
Bradford, K.J., (1995). Water relations in seed germination. In: Kigel, J., Galili, G. (Eds.), Seed Development i Germination. Marcel Dekker, New York, pp. 351-396.
Cieśla A., Kraszewski, W., Skowron, M., Syrek P. (2015). Wpływ działania pola magnetycznego na kiełkowanie nasion. Przegląd Elektrotechniczny, 91(1), 125-128
Daws, M.I., Crabtree, L.M., Dalling, J.W., Mullins, C.E., Burslem, D. (2008). Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks. Annals of Botany 102, 945-951.10.1093/aob/mcn186271240318840874
De Wit, C.T. (1982). Simulation of living systems. In Simulation of plant growth and crop production, ed. F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs, PUDOC, Wageningen, The Netherlis. pp. 3-8.
Dingkuhn, M., Penning De Vries, F.W.T., Miezan, K.M. (1993). Improvement of rice plant type concepts: systems research enables interaction of physiology i breeding. In: Penning de Vries F., Teng P., Metselaar K. (eds) Systems approaches for agricultural development. Systems Approaches for Sustainable Agricultural Development, vol 2. Springer, Dordrecht
Ellis, R.H., Covell, S., Roberts, E.H., Summerfield, R.J.(1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea at constant temperatures. Journal of Experimental Botany, 37, 1503-1515.10.1093/jxb/37.10.1503
Fellner, M., Sawhney, V.K. (2001). Seed germination in a tomato male-sterile mutant is resistant to osmotic, salt and low temperature stresses. Theoretical and Applied Genetics, 102, 215-221.10.1007/s001220051638
Finch-Savage, W.E., Bergervoet, J.H.W., Bino, R.J., Clay, H.A., Groot, S.P.C. (1998). Nuclear replication activity during seed-dormancy breakage and germination in the three tree species: Norway maple (Acer platanoides L.), sycamore (Acer pseudoplatanus L.) and cherry (Prunus avium L.). Annals of Botany, 81, 519-526.10.1006/anbo.1998.0587
Finch-Savage, W.E., Phelps, K. (1993). Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. Journal of Experimental Botany 44, 407-414.10.1093/jxb/44.2.407
Forcella, F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, 201-209.10.1017/S0960258500004116
Garcia-Huidobro, J., Monteith, J.L., Squire, G.R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S.H.). 1. Constant temperature. Journal of Experimental Botany, 33, 288-296.10.1093/jxb/33.2.288
Gładyszewska B. (1998). Ocena wpływu przedsiewnej laserowej biostymulacji nasion pomidorów na proces ich kiełkowania. Rozprawa doktorska. Lublin. Maszynopis.
Gładyszewska, B., Ciupak, A. (2009). Effect of temperature on the viability of buckwheat (cv. Kora) seeds. Teka Komisji Motoryzacji i Energetyki Rolnictwa, 6, 31-39.
Hunt, L.A. (1993). Designing improved plant types: a breeder’s viewpoint. In: F.W.T., Penning de Vries F.P., Teng P., Metselaar K. (eds) Systems approaches for agricultural development. Springer, Dordrecht
Jazwiński, J., Pabis, S., Wieremiejczyk, W. (1975). Symulacyjne metody badań niezawodności systemów technicznych. Materiały na „Szkołę Zimową -75”. Jaszowiec, 13-18 stycznia 1975, Katowice.
Keller, E.F. (2002). Making Sense of Life. Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.10.4159/9780674039445
Köchy, M., Tielbörger, K. (2007). Hydrothermal time model of germination: parameters for 36 Mediterranean annual species based on a simplified approach. Basic and Applied Ecology, 8,171-182.10.1016/j.baae.2006.04.002
Kropff, M.J., Haverkort, A.J., Aggarwal, P.K., Kooman, P.L. (1995). Using systems approaches to design and evaluate ideotypes for specific environments. J. Bouma, A. Kuyvenhoven, B.A.M. Bouman, J.C. Luyten, H.G. Zistra (Eds.), Eco-regional approaches for sustainable li use and food production, Kluwer Academic Publishers, Dordrecht, The Netherlis, 417-435.10.1007/978-94-011-0121-9_21
Maksym, P., Marciniak, A.W., Kostecki, R. (2006). Zastosowanie sieci bayesowskich do modelowania rolniczego procesu produkcyjnego. Inżynieria Rolnicza, 12, 321-330.
Matthews, R.B., Kropff, M.J., Bachelet, D., van Laar, H.H. (1995). Modelling the impact of climate change on rice production in Asia. CAB International, Wallingford, UK.
Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R., Cousens, R.D. (2012). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53, 89-101.10.1111/wre.12008
Minorsky, P.V. (2003). Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiolgy, 132, 404-409.10.1104/pp.900076
Muszyński, S., Świetlicka, I., Świetlicki, M., Gładyszewska, B. (2015). Modelowanie kinetyki kiełkowania nasion pomidora z wykorzystaniem równania Gompertza. Acta Scientiarum Polonorum Technica Agraria, 14(1-2), 61-69.
Odabas, M.S., Mut, Z. (2007). Modelling the effect of temperature on percentage and duration of seed germination in grain legumes and cereals. American Journal of Plant Physiology, 2, 303-310.10.3923/ajpp.2007.303.310
Palanisamy, S., Penning de Vries, F.W.T., Mohiass, S., Thiyagarajan, T.M., Kareem A.A. (1993). Simulation in pre-testing of rice genotypes in Tamil Nadu. F.W.T. Penning de Vries, P. Teng, K. Metselaar (Eds.), Systems approaches for sustainable agricultural development, Kluwer Academic Publishers, Dordrecht, The Netherlis, 63-75.
Penning de Vries, F.W.T. (1982). Simulation of Plant Growth and Crop Production. Van Laar H.H. (Eds.), Simulation Monographs, Pudoc, Wageningen, The Netherlis.
Ranal, M.A., Santana, D.G. (2006). How and why to measure the germination process. Revista Brasileira de Botânica, 29, 1-11.10.1590/S0100-84042006000100002
Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., Chiler, R.E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of bacteriology, 154(3), 1222-1226.10.1128/jb.154.3.1222-1226.1983
Roberts, E.H. (1988). Temperature and seed germination. In: Long, S.P., Woodword, F.I. (Eds.), Plants and Temperature. Society for Experimental Biology. Company of Biologists, Cambridge.
Room, P., Hanan, J., Prusinkiewicz, P. (1996). Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science, 1, 33-38.10.1016/S1360-1385(96)80021-5
Rowse, H.R., Finch-Savage, W.E. (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist, 158, 101-108.10.1046/j.1469-8137.2003.00707.x
Seligman, N.G. (1990). The crop model record: promise or poor show? R. Rabbinge, J. Goudriaan, H. van Keulen, F.W.T. Penning de Vries, H.H. van Laar (Eds.), Theoretical Production Ecology: Reflections and Prospects, PUDOC, Wageningen, pp. 249-258.
Shafii, B., Price, W.J., Swensen, J.B., i Murray, G.A. (1991). “Nonlinear Estimation of Growth Curve Models for Germination Data Analysis,” in Proceedings of the 1991 Kansas State University Conference on Applied Statistics in Agriculture, G. A. Milliken i J. R. Schwenke (eds.), Manhattan, KS: Kansas State University, 19-42.
Shafii, B., Price, W.J. (2001). Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological and Environmental Statistics, 6, 356-36610.1198/108571101317096569
Tjørve, E., Tjørve, K.M.C. (2010). A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. Journal of Theoretical Biology, 267, 417-425.10.1016/j.jtbi.2010.09.008
Trajer, J. (2005). Sztuczne sieci neuronowe w modelowaniu procesów z ograniczonym zbiorem danych w inżynierii rolniczej. Inżynieria Rolnicza, 2(62), 55-61.
Van Keulen, H., Stol, W. (1995). Agro-ecological zonation for potato production. A.J. Haverkort, D.K.L. Mackerron (Eds.), Potato ecology and modelling of crops under conditions limiting growth, Kluwer Academic Publishers, Dordrecht, The Netherlis (1995), pp. 357-371.10.1007/978-94-011-0051-9_23
Werker, A.R., Jaggard, K.W. (1997). Modelling Asymmetrical Growth Curves that Rise and then Fall: Applications to Foliage Dynamics of Sugar Beet (Beta vulgaris L.). Annals of Botany, 79, 657-665.10.1006/anbo.1997.0387
Wolf, J. (1993). Effects of climate change on wheat production potential in the European Community. European Journal of Agronomy, 2, 281-292.10.1016/S1161-0301(14)80176-7
Yang, R.C., Kozak, A., Smith, J.H.G. (1978). The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research, 8, 424-431.10.1139/x78-062