Have a personal or library account? Click to login
Present Trends in Research on Application of Artificial Neural Networks in Agricultural Engineering Cover

Present Trends in Research on Application of Artificial Neural Networks in Agricultural Engineering

Open Access
|Feb 2017

References

  1. Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A. (2012). The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 88, 32-43.10.1016/j.compag.2012.06.007
  2. Boniecki, P., Koszela, K., Piekarska-Boniecka, H., Weres, J., Zaborowicz, M., Kujawa, S., Majewski, A., Raba, B. (2015). Neural identification of selected apple pests. Computers and Electronics in Agriculture, 110, 9-16.10.1016/j.compag.2014.09.013
  3. Cobaner, M., Citakoglu, H., Kisi, O., Haktanir, T. (2014). Estimation of mean monthly air temperatures in Turkey. Computers and Electronics in Agriculture, 109, 71-79.10.1016/j.compag.2014.09.007
  4. Engelbrecht A.P. (2007). Computational Intelligence. An Introduction. 2nd ed.. John Wiley & Sons Ltd. ISBN 978-0-470-03561-0.10.1002/9780470512517
  5. Gocic, M., Motamedi, S., Shamshirband, S., Petkovic, D., Sudheer, C., Hashim, R., Arif, M. (2015). Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 113, 164-173.10.1016/j.compag.2015.02.010
  6. Gocic, M., Trajkovic, S. (2011). Service-oriented approach for modeling and estimating reference evapotranspiration. Computers and Electronics in Agriculture, 79, 153-158.10.1016/j.compag.2011.09.001
  7. Hagan M.T., Demuth H.B., Beale M.H., De Jesus O. (2014). Neural Network Design (2nd Edition). Martin Hagan. ISBN-10: 0-9717321-1-6. ISBN-13: 978-0-9717321-1-7.
  8. Hendrawan, Y., Murase, H. (2011). Neural-Intelligent Water Drops algorithm to select relevant textural features for developing precision irrigation system using machine vision. Computers and Electronics in Agriculture, 77, 214-228.10.1016/j.compag.2011.05.005
  9. Jain, L.C., Tan S.C., Lim. C.P. (2008). An Introduction to Computational Intelligence Paradigms. Studies in Computational Intelligence, 137, 1-23.10.1007/978-3-540-79474-5_1
  10. Kasabov, N.K. (1998). Foundations of neural networks, fuzzy systems, and knowledge engineering. Cambridge, Mass. MIT Press. ISBN 0-262-11212-4.
  11. Kisi, O., Sanikhani, H., Zounemat-Kermani, M., Niazi, F. (2015). Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Computers and Electronics in Agriculture, 115, 66-77.10.1016/j.compag.2015.04.015
  12. Marti, P., Shiri, J., Duran-Ros, M., Arbat, G., de Cartagena, F.R., Puig-Bargues, J. (2013a). Artificial neural networks vs. Gene Expression Programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents. Computers and Electronics in Agriculture, 99, 176-185.10.1016/j.compag.2013.08.016
  13. Marti, P., Gasque, M., Gonzalez-Altozano, P. (2013b). An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Computers and Electronics in Agriculture, 91, 75-86.10.1016/j.compag.2012.12.001
  14. Mohammadi, K., Shamshirband, S., Motamedi, S., Petkovic, D., Hashim, R., Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225.10.1016/j.compag.2015.08.008
  15. Mollazade, K., Omid, M., Arefi, A. (2012). Comparing data mining classifiers for grading raisins based on visual features. Computers and Electronics in Agriculture, 84, 124-131.10.1016/j.compag.2012.03.004
  16. Nadimi, E.S., Jorgensen, R.N., Blanes-Vidal, V., Christensen, S. (2012). Monitoring and classifying animal behaviour using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks. Computers and Electronics in Agriculture, 82, 44-54.10.1016/j.compag.2011.12.008
  17. Nazghelichi, T., Aghbashlo, M., Kianmehr, M.H., (2011). Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture, 75, 84-91.10.1016/j.compag.2010.09.014
  18. Nourbakhsh, H., Emam-Djomeh, Z., Omid, M., Mirsaeedghazi, H., Moini, S. (2014). Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Computers and Electronics in Agriculture, 102, 1-9.10.1016/j.compag.2013.12.017
  19. Shiri, J., Nazemi, A.H., Sadraddini, A.A., Landeras, G., Kisi, O., Fard, A.F., Marti, P. (2014). Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108, 230-241.10.1016/j.compag.2014.08.007
  20. Szczypinski, P.M., Klepaczko, A., Zapotoczny, P. (2015) Identifying barley varieties by computer vision. Computers and Electronics in Agriculture, 110, 1-8.10.1016/j.compag.2014.09.016
  21. Teimouri, N., Omid, M., Mollazade, K., Rajabipour, A. (2014). A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow. Computers and Electronics in Agriculture, 105, 34-43.10.1016/j.compag.2014.04.008
  22. Zurada J.M. (1992). Introduction to Artificial Neural Systems. West Publishing Co. St. Paul, MN, USA. ISBN 0-3 14-93391 -3.
DOI: https://doi.org/10.1515/agriceng-2016-0060 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 15 - 25
Submitted on: Sep 1, 2016
Accepted on: Nov 1, 2016
Published on: Feb 9, 2017
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Sławomir Francik, Zbigniew Ślipek, Jarosław Frączek, Adrian Knapczyk, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.