Have a personal or library account? Click to login
Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity Cover

Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity

Open Access
|Jan 2018

References

  1. ABOUKHEIR, E. – SHESHSHAYEE, M.S. – UDAYAKUMAR, M. 2008. AAB International Conference on Resource Capture by Crops: Integrated Approach, 14–16 September 2008, University of Nottingham at Sutton Bonington.
  2. ABUL-NAAS, A.A. – OMRAN, M.S. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. In Zeitschrift für Acker-und Pflanzenbau, vol. 140, pp. 229–236.
  3. AHMED, F.M. 1994. Effect of saline water irrigation at different stages of growth on cotton plant. In Assiut Journal of Agricultural Sciences, vol. 25, pp. 63–74.
  4. ARMENGAUD, P. – ZAMBAUX, K. – HILLS, A. – SULPICE, R. – PATTISON, R.J. – BLATT, M.R. – AMTMANN, A. 2009. EZ–Rhizo: integrated software for the fast and accurate measurement of root system architecture. In Plant Journal, vol. 57, pp. 945–956. DOI: 10.1111/j.1365-313X.2008.03739.x10.1111/j.1365-313X.2008.03739.x19000163
  5. ASHOUR, N.I. – ABD-EL’HAMID, A.E.H.M. 1970. Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. In Plant and Soil, vol. 3, pp. 493–495. DOI: 10.1007/BF0137824010.1007/BF01378240
  6. BASAL, H. – BEBELI, P. – SMITH, C.W. – THAXTON, P. 2003. Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. In Crop Science, vol. 43, pp. 1983–1988. DOI:10.2135/cropsci2003.198310.2135/cropsci2003.1983
  7. BATES, L.S. – WALDEEN, R.P. – TEARE, I.D. 1973. Rapid determination of free proline for water-stress studies. In Plant and Soil, vol. 39, pp. 205–207. DOI: 10.1007/BF0001806010.1007/BF00018060
  8. DARWISH, E. – MOTTALEB, S.A. – OMARA, M. – SAFWAT, G. 2016. Effect of salt stress on root plasticity and expression of ion transporter genes in tomato plants. In International Journal of Botany and Research (IJBR), vol. 6, pp. 13–26. Available from: https://www.researchgate.net/profile/Heba_Ibrahim4/publication/299289414_EFFECT_OF_SALT_STRESS_ON_ROOT_PLASTICITY_AND_EXPRESSION_OF_ION_TRANSPORTER_GENES_IN_TOMATO_PLANTS/links/570d581a08ae2b772e43200e/EFFECT-OF-SALT-STRESS-ON-ROOT-PLASTICITY-AND-EXPRESSION-OF-ION-TRANSPORTER-GENES-IN-TOMATO-PLANTS.pdf
  9. DAVENPORT, R.J. – MUNOZ-MAYOR, A. – JHA, D. – ESSAH, P.A. – RUS, A. – TESTER, M. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. In Plant, Cell and Environment, vol. 30, pp. 497–507. DOI: 10.1111/j.1365-3040.2007.01637.x10.1111/j.1365-3040.2007.01637.x17324235
  10. DEVIENNE-BARRET, F. – RICHARD-MOLARD, C. – CHELLE, M. – MAURY, O. – NEY, B. 2006. Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. In Plant and Soil, vol. 280, pp. 253–266. DOI: 10.1007/s11104-005-3224-110.1007/s11104-005-3224-1
  11. EL-KADI, D.A. – AFIAH, S.A. – ALY, M.A. – BADRAN, A.E. 2006. Bulked segregant analysis to develop molecular markers for salt tolerance in Egyptian cotton. In Arab Journal of Biotechnology, vol. 9, pp. 129–142. Available from: https://www.researchgate.net/profile/Mohammed_Aly2/publication/228936120_Bulked_segregant_analysis_to_develop_molecular_markers_for_salt_tolerance_in_Egyptian_cotton/links/0c96052de7b9fcfc03000000.pdf
  12. EL-ZAHAB, A.A.A. 1971. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. In Zeitschrift für Acker- und Pflanzenbau, vol. 133, pp. 308–314.
  13. GARCIADEBLAS, B. – SENN, M.E. – BANUELOS, M.A. – RODRÍGUEZ-NAVARRO, A. 2003. Sodium transport and HKT transporters: the rice model. In Plant Journal, vol. 34, pp. 788–801. DOI: 10.1046/j.1365-313X.2003.01764.x10.1046/j.1365-313X.2003.01764.x
  14. GORHAM, J. – LAUCHLI, A. – LEIDI, E.O. 2010. Plant responses to salinity. In STEWART, J.M. ‒ OOSTERHUIS, D.M. ‒ HEITHOLT, J.J. ‒ MAUNEY, J.R. (Eds.) Physiology of Cotton. London : Springer, pp. 129–141. DOI: 10.1007/978-90-481-3195-2_1310.1007/978-90-481-3195-2_13
  15. HE, G. – SHEN, G. – PASAPULA, V. – LUO, J. – VENKATARAMANI, S. – QIU, X. – KUPPU, S. – KORNYEYEV, D. – HOLADAY, A.S. – AULD, D. – BLUMWALD, E. – ZHANG, H. 2007. Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. In Journal of Cotton Science, vol. 11, pp. 266–274. Available from: http://www.cotton.org/journal/2007-11/4/upload/jcs11-266.pdf
  16. JULKOWSKA, M.M. – TESTERINK, C. 2015. Tuning plant signaling and growth to survive salt. In Trends in Plant Science, vol. 20, pp. 586–594. DOI: http://dx.doi.org/10.1016/j.tplants.2015.06.00810.1016/j.tplants.2015.06.00826205171
  17. KARLEY, A.J. – LEIGH, R.A. – SANDERS, D. 2000. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. In Plant Physiology, vol. 122, pp. 835–844. DOI: 10.1104/pp.122.3.835.10.1104/pp.122.3.8355891910712547
  18. MUNNS, R. – TESTER, M. 2008. Mechanisms of salinity tolerance. In Annual Review of Plant Biology, vol. 59, pp. 651–681. DOI: 10.1146/annurev.arplant.59.032607.09291110.1146/annurev.arplant.59.032607.09291118444910
  19. MURASHIGE, T. – SKOOG, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. In Physiologiae Plantarum, vol. 15, pp. 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.x
  20. OOSTERHUIS, D.M. – WULLSCHLEGER, S.D. 1988. Drought tolerance and osmotic adjustment of various crops in response to water stress. In Arkansas Farm Research, vol. 37, pp. 12.
  21. PACE, P.F. – CRALLE, H.T. – EL-HALAWANY, S.H. – COTHREN, J.T. – SENSEMAN, S.A. 1999. Drought-induced changes in shoot and root growth of young cotton plants. In Journal of Cotton Science, vol. 3, pp. 183–187. Available from https://www.cotton.org/journal/1999-03/4/upload/jcs03-183.pdf. [accessed 23 July 2016].
  22. QADIR, M. – QUILLÉROU, E. – NANGIA, V. – MURTAZA, G. – SINGH, M. – THOMAS, R.J. – DRECHSEL, P. – NOBLE, A.D. 2014. Economics of salt-induced land degradation and restoration. In Natural Resources Forum, vol. 38, pp. 282–295. DOI: 10.1111/1477-8947.1205410.1111/1477-8947.12054
  23. QUISENBERRY, J.E. – JORDAN, W.R. – ROARK, B.A. – FRYREAR, D.W. 1981. Exotic cottons as genetic sources for drought resistance. In Crop Science, vol. 21, pp. 889–895. DOI:10.2135/cropsci1981.0011183X002100060022x10.2135/cropsci1981.0011183X002100060022x
  24. QUISENBERRY, J.E. – ROARK, B.A. – McMICHAEL, B.L. 1982. Use of transpiration decline curves to identify drought-tolerant cotton germplasm. In Crop Science, vol. 22, pp. 918–922. DOI:10.2135/cropsci1982.0011183X002200050004x10.2135/cropsci1982.0011183X002200050004x
  25. ROY, S.J. – NEGRÃO, S. – TESTER, M. 2014. Salt resistant crop plants. In Current Opinion in Biotechnology, vol. 26, pp. 115–124. DOI: 10.1016/j.copbio.2013.12.00410.1016/j.copbio.2013.12.00424679267
  26. SHABALA, S. – CUIN, T.A. 2008. Potassium transport and plant salt tolerance. In Physiologiae Plantarum, vol. 133, pp. 651–669. DOI: 10.1111/j.1399-3054.2007.01008.x10.1111/j.1399-3054.2007.01008.x18724408
  27. SHABALA, S. – MUNNS, R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In SHABALA, S. (Ed.) Plant Stress Physiology. Oxfod : CAB International, pp. 59–93. DOI: 10.1079/9781845939953.005910.1079/9781845939953.0059
  28. SINCLAIR, T.R. – LUDLOW, M.M. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. In Australian Journal of Plant Physiology, vol. 12, pp. 213–218. DOI: 10.1071/PP985021310.1071/PP9850213
  29. STEELE, K.A. – PRICE. A.H. – WITCOMBE, J.R. – SHRESTHA, R. – SINGH, B.N. – GIBBONS, J.M. – VIRK, D.S. 2013. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. In Theoretical and Applied Genetics, vol. 126, pp. 101–108. DOI: 10.1007/s00122-012-1963-y10.1007/s00122-012-1963-y22968512
  30. TAYLOR, H.M. – UPCHURCH, D.R. – BROWN, J.M. – ROGERS, H.H. 1991. Some methods of root investigation. In McMICHAEL, B.L. ‒ PERSSON, H. (Eds.) Plant roots and Their Environment. New York : Elsevier Science Publishers, Inc., pp. 553–564. DOI:10.1016/B978-0-444-89104-4.50075-X10.1016/B978-0-444-89104-4.50075-X
  31. TUBEROSA, R. – SANGUINETI, M.C. – LANDI, P. – GIULIANI, M.M. – SALVI, S. – CONTI, S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. In Plant Molecular Biology, vol. 48, pp. 697–712. DOI: 10.1023/A:101489760767010.1023/A:1014897607670
  32. UDAYAKUMAR, M. – RAO, R.C.N. – WRIGHT, G.C. – RAMASWAMY, G.C. – ASHOK, R.S. – GANGADHAR, G.C. – AFTAB HUSSAIN, I.S. 1998. Measurement of transpiration efficiency in field conditions. In Journal of Plant Physiology and Biochemistry, vol. 1, pp. 69–75.
  33. UGA, Y. – SUGIMOTO, K. – OGAWA, S. – RANE, J. – ISHITANI, M. – HARA, N. – KITOMI, Y. – INUKAI, Y. – ONO, K. – KANNO, N. – INOUE, H. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. In Nature Genetics, vol. 45, pp. 1097–1102. DOI:10.1038/ng.272510.1038/ng.272523913002
  34. WEATHERLY, P.E. 1950. Studies in the water relations of the cotton plant. The field measurement of water deficits in leaves. In New Phytologist, vol. 49, pp. 81–97. DOI: 10.1111/j.1469-8137.1950.tb05146.x10.1111/j.1469-8137.1950.tb05146.x
  35. ZHONG, H. – LAUCHLI, A. 1993. Spatial and temporal aspects of growth in the primary root of cotton seedlings: Effects of NaCl and CaCl2. In Journal of Experimental Botany, vol. 44, pp. 763–771. DOI: 10.1093/jxb/44.4.76310.1093/jxb/44.4.763
DOI: https://doi.org/10.1515/agri-2017-0014 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 142 - 150
Submitted on: Apr 24, 2017
Published on: Jan 19, 2018
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Shady A. Mottaleb, Essam Darwish, Menna Mostafa, Gehan Safwat, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.