Have a personal or library account? Click to login
Ceramides in the skin barrier Cover
Open Access
|Nov 2017

References

  1. [1] Banks-Schlegel S, Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981;90:732-737.10.1083/jcb.90.3.732
  2. [2] Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM. J. Invest. Dermatol. 2000;114:185.
  3. [3] Bouwstra JA, Gooris GS, Bras W, Downing DT. Lipid organization in pig stratum corneum. J. Lipid. Res. 1995;36:685-695.
  4. [4] Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid. Res. 2001;42:1759-1770.
  5. [5] Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005-1012.
  6. [6] Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758:2080-2095.
  7. [7] Breathnach AS. Aspects of epidermal ultrastructure. J. Invest. Dermatol. 1975;65:2-15.10.1111/1523-1747.ep12598018
  8. [8] Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim Biophys Acta. 2014;1841:441-452.10.1016/j.bbalip.2013.08.010
  9. [9] Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005;6:328-340.
  10. [10] Corkery RW. The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B Biointerfaces. 2002;26:3-20.10.1016/S0927-7765(02)00034-6
  11. [11] Craven B. Pseudosymmetry in cholesterol monohydrate. Acta Crystallogr Sect B. 1979;35:1123-1128. 10.1107/S0567740879005719
  12. [12] Damien F, Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611-614.
  13. [13] de Jager M, Gooris G, Ponec M, Bouwstra J. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Invest. Dermatol. 2004;123:911-916.
  14. [14] de Jager M, Groenink W, i Guivernau RB, et al. A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharmaceut. Res. 2006;23:951-960.
  15. [15] de Sousa Neto D, Gooris G, Bouwstra J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids. 2011;164:184-195.10.1016/j.chemphyslip.2010.12.00721238439
  16. [16] Elias PM. Skin barrier function. Curr. Allergy Asthma Rep. 2008;8:299-305.
  17. [17] Elias PM, Goerke J, Friend DS. Mammalian Epidermal Barrier Layer Lipids: Composition and Influence on Structure. J. Invest. Dermatol. 1977;69:535-546.
  18. [18] Elias PM, Gruber R, Crumrine D, et al. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta. 2014;1841:314-318.10.1016/j.bbalip.2013.09.011394382124076475
  19. [19] Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta. 2014;1841:280-294.
  20. [20] Grayson S, Elias PM. Isolation and Lipid Biochemical Characterization of Stratum Corneum Membrane Complexes: Implications for the Cutaneous Permeability Barrier. J. Invest. Dermatol. 1982;78:128-135.
  21. [21] Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274:1855-1859.10.1126/science.274.5294.18558943189
  22. [22] Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139-150.
  23. [23] Holleran WM, Takagi Y, Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580:5456-5466.10.1016/j.febslet.2006.08.03916962101
  24. [24] Hou SY, Mitra AK, White SH, Menon GK, Ghadially R, Elias PM. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215-223.
  25. [25] Iwai I, Han H, den Hollander L, et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215-2225.
  26. [26] Jakasa I, Koster ES, Calkoen F, et al. Skin barrier function in healthy subjects and patients with atopic dermatitis in relation to filaggrin loss-of-function mutations. J. Invest. Dermatol. 2011;131:540-542.
  27. [27] Janusova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta. 2011;1811:129-137.10.1016/j.bbalip.2010.12.00321167310
  28. [28] Janůšova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. BBA-Mol. Cell Biol. L. 2011;1811:129-137.
  29. [29] Jennemann R, Rabionet M, Gorgas K, et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet. 2012;21:586-608.10.1093/hmg/ddr494
  30. [30] Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J. Clin. Invest. 1999;104:1761-1770.10.1172/JCI5307
  31. [31] Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911-918. 10.1111/j.1398-9995.2010.02326.x
  32. [32] Kessner D, Brezesinski G, Funari SS, Dobner B, Neubert RH. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chem Phys Lipids. 2010;163:42-50.10.1016/j.chemphyslip.2009.10.007
  33. [33] Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH. Properties of ceramides and their impact on the stratum corneum structure. Part 2: stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58-74.
  34. [34] Kovacik A, Opalka L, Silarova M, Roh J, Vavrova K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation- -protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343-73350.10.1039/C6RA16565F
  35. [35] Kovačik A, Roh J, Vavrova K. The chemistry and biology of 6 hydroxyceramide, the youngest member of the human sphingolipid family. ChemBioChem. 2014;15:1555-1562.10.1002/cbic.201402153
  36. [36] Lampe MA, Burlingame A, Whitney J, et al. Human stratum corneum lipids: characterization and regional variations. J.Lipid Res. 1983;24:120-130.10.1016/S0022-2275(20)38005-6
  37. [37] Long SA, Wertz PW, Strauss JS, Downing DT. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 1985;277:284-287.10.1007/BF00509081
  38. [38] Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714-718.
  39. [39] Masukawa Y, Narita H, Shimizu E, et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid. Res. 2008;49:1466-1476.
  40. [40] Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta. 2006;1758:923-933. 10.1016/j.bbamem.2006.04.009
  41. [41] Mendelsohn R, Moore DJ. Infrared determination of conformational order and phase behavior in ceramides and stratum corneum models. Methods Enzymol. 2000;312:228-247.10.1016/S0076-6879(00)12913-1
  42. [42] Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009;91:784-790.10.1016/j.biochi.2009.04.001
  43. [43] Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J. 2015a;108:2670-2679.10.1016/j.bpj.2015.04.030
  44. [44] Mojumdar EH, Gooris GS, Bouwstra J. Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization. Soft matter. 2015b;11:4326-4336.10.1039/C4SM02786H
  45. [45] Mojumdar EH, Kariman Z, van Kerckhove L, Gooris GS, Bouwstra JA. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim Biophys Acta. 2014;1838:2473-2483.10.1016/j.bbamem.2014.05.023
  46. [46] Mori K, Matsuda H. Syntheisi of sphingosine relatives .10. Synthesis of (2S,3R,4E)-1-O-(beta-D-glucopyranosyl)-N- 30’- (linoleoyloxy)triacontanoyl-4-icosasphingenine, a new esterified cerebroside isolated from human and pig epidermis. Liebigs Ann. Chem. 1991:529-535.10.1002/jlac.199119910197
  47. [47] Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993;1182:147-151.10.1016/0925-4439(93)90135-N
  48. [48] Muller S, Schmidt RR. Synthesis of two unique compounds, a ceramide and a cerebroside, occurring in human stratum corneum. J. Prakt. Chem. 2000;342:779-784.
  49. [49] Neto DD, Gooris G, Bouwstra J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids. 2011;164:184-195.
  50. [50] Norlen L. Current understanding of skin barrier morphology. Skin Pharmacol Physiol. 2013;26:213-216. 10.1159/00035193023921107
  51. [51] Norlen L, Nicander I, Lundsjo A, Cronholm T, Forslind B. A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch. Dermatol. Res. 1998;290:508-516.
  52. [52] Novotny J, Hrabalek A, Vavrova K. Synthesis and structure-activity relationships of skin ceramides. Curr Med Chem. 2010;17:2301-2324. 10.2174/09298671079133106820459376
  53. [53] Novotny J, Janůšova B, Novotny M, Hrabalek A, Vavrova K. Short- -chain ceramides decrease skin barrier properties. Skin Pharmacol. Physiol. 2009;22:22-30.
  54. [54] Opalka L, Kovačik A, Maixner J, Vavrova K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir. 2016;32:12894-12904.10.1021/acs.langmuir.6b0308227934529
  55. [55] Opálka L, Kováčik A, Sochorová M, et al. Scalable Synthesis of Human Ultralong Chain Ceramides. Org. Lett. 2015;17:5456-5459.
  56. [56] Pullmannova P, Staňkova K, Pospišilova M, Školova B, Zbytovska J, Vavrova K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. BBA-Biomembranes. 2014;1838:2115-2126.10.1016/j.bbamem.2014.05.00124824073
  57. [57] Rabionet M, Bayerle A, Marsching C, et al. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid. Res. 2013;54:3312-3321.
  58. [58] Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta. 2014;1841:422-434.10.1016/j.bbalip.2013.08.01123988654
  59. [59] Rerek ME, Chen H, Markovic B, et al. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355 -9362.
  60. [60] Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid. Res. 1994;35:2060-2068.
  61. [61] Shieh H-S, Hoard LG, Nordman CE. The structure of cholesterol. Acta Crystallogr Sect B. 1981;37:1538-1543.10.1107/S0567740881006523
  62. [62] Schreiner V, Pfeiffer S, Lanzendorfer G, et al. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 2000;114:654-660.
  63. [63] Skolova B, Hudska K, Pullmannova P, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J Phys Chem B. 2014;118:10460-10470.10.1021/jp506407r25122563
  64. [64] Skolova B, Janusova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. Biochim Biophys Acta. 2016;1858:220-232.10.1016/j.bbamem.2015.11.01926615916
  65. [65] Skolova B, Janusova B, Zbytovska J, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624-15633.10.1021/la403747424283654
  66. [66] Stahlberg S, Lange S, Dobner B, Huster D. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by (2)H Solid-State NMR Spectroscopy. Langmuir. 2016;32:2023-2031.10.1021/acs.langmuir.5b0417326828109
  67. [67] Stahlberg S, Skolova B, Madhu PK, Vogel A, Vavrova K, Huster D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. Langmuir. 2015;31:4906-4915.10.1021/acs.langmuir.5b0075125870928
  68. [68] Školová B, Hudská Kr, Pullmannová P, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460-10470.
  69. [69] Školova B, Janůšova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA-Biomembranes. 2016;1858:220-232.10.1016/j.bbamem.2015.11.019
  70. [70] Školová B, Janůšová B, Zbytovská J, et al. Ceramides in the skinlipid membranes: length matters. Langmuir. 2013;29:15624-15633. 10.1021/la4037474
  71. [71] t’Kindt R, Jorge L, Dumont E, et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography- -quadrupole time-of-flight mass spectrometry. Anal Chem. 2012;84:403-411.10.1021/ac202646v22111752
  72. [72] Uchida Y, Holleran WM. Omega-O-acylceramide, a lipid essential for mammalian survival. Journal of Dermatological Science. 2008;51:77-87.10.1016/j.jdermsci.2008.01.00218329855
  73. [73] van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta. 2014a;1841:70-79.10.1016/j.bbalip.2013.10.00224120918
  74. [74] van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J. Lipid Res. 2011;52:1211-1221.10.1194/jlr.M014456309024221444759
  75. [75] van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta. 2014b;1841:295-313.10.1016/j.bbalip.2013.11.00624252189
  76. [76] Vasireddy V, Uchida Y, Salem N, et al. Hum. Mol. Genet. 2007;16:471.
  77. [77] Vavrova K, Henkes D, Struver K, et al. Filaggrin Deficiency Leads to Impaired Lipid Profile and Altered Acidification Pathways in a 3D Skin Construct. J Invest Dermatol. 2014;134:746-753.10.1038/jid.2013.40224061166
  78. [78] Wertz PW, Madison KC, Downing DT. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 1989;92:109-111.
  79. [79] White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988;27:3725-3732.10.1021/bi00410a0313408722
Language: English
Page range: 28 - 35
Submitted on: Oct 31, 2016
Accepted on: Dec 7, 2016
Published on: Nov 30, 2017
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2017 K. Vávrová, A. Kováčik, L. Opálka, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.