Have a personal or library account? Click to login
Initiation and Tolerance of Macro-Damage of First Ply (FBF) in a Process of Damaging of Hybrid Multi-Ply Structures Due to Reinforcement Archtecture Cover

Initiation and Tolerance of Macro-Damage of First Ply (FBF) in a Process of Damaging of Hybrid Multi-Ply Structures Due to Reinforcement Archtecture

By: D. Pieniak  
Open Access
|Jul 2018

References

  1. 1. Giurgiutiu V.: Fundamentals of Aerospace Composite Materials. [In] Structural Health Monitoring of Aerospace Composites. Elsevier 2015.10.1016/B978-0-85709-523-7.00016-5
  2. 2. Kuna-Ciskał H., Skrzypek J., CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. Engineering Fracture Mechanics, 71(4-6) (2004).10.1016/S0013-7944(03)00023-7
  3. 3. Shan M., Zhao L., Hong H., Liu F., Zhang J.: A progressive fatigue damage model for composite structures in hygrothermal environments. International Journal of Fatigue, 111 (2018).10.1016/j.ijfatigue.2018.02.019
  4. 4. Ochelski S., Gotowicki P., Doświadczalna ocena zdolności pochłaniania energii kompozytów węglowo-epoksydowych i szklano-epoksydowch. Biuletyn WAT, 56(1) (2007) in Polish.
  5. 5. Karbhari V.M., Strassler H., Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials, 23(8) (2007).10.1016/j.dental.2006.08.00317084889
  6. 6. Kuhtz M., Horning A., Gude M., Jäger H., A method to control delaminations in composites for adjusted energy dissipation characteristics. Materials & Design, 123 (2017).10.1016/j.matdes.2017.03.003
  7. 7. Erden S., Ho K.: Fiber reinforced composites. [In] Fiber Technology for Fiber-Reinforced Composites [Ed] Özgür Seydibeyoğlu M, Mohanty A.K., Misra M. Woodhead Publishing 2017.10.1016/B978-0-08-101871-2.00003-5
  8. 8. Ferracene J.L., Palin W.M. Effects of particulate filler systems on the properties and performance of dental polymer composites [In] Non-Metallic Biomaterials for Tooth Repair and Replacement, [Ed] P. Vallittu, Woodhead Publishing, Cambridge 2013.10.1533/9780857096432.3.294
  9. 9. Shalaby W. Shalaby, Ulrich S., Polymers for dental and orthopedic applications. CRC Press, Boca Raton 2007.10.1201/9781420003376
  10. 10. Lloyd C.H., The fracture toughness of dental composites. Journal of Oral Rehabilitation, 11(4) (1984).10.1111/j.1365-2842.1984.tb00591.x6589385
  11. 11. Fani M., Farmani S., Bagheri R., Fratcture toughness of resin composite under different modes and media: reviev of articles. Journal of Dental Biomaterials, 2(3) (2015).
  12. 12. Hammouda I.M., Hagag E.A., Evaluation the mechanical properties of nanofiled composite resin restorative material. Journal of Biomaterials and Nanobiotechnology, 3(2) (2012).
  13. 13. Soderholm K.J. Fracture of dental materials, [In] Applied fracture mechanics, [Ed] Belov A., InTech, 2012.10.5772/48354
  14. 14. Marandu S.I., Gu G., Bicker R., Experimental and analytical study of surface fatigue life in dental composites. Journal of Composite Materials, 50(16) (2016).10.1177/0021998315602942
  15. 15. Farooq M., Banthia N.: An innovative FRP fibre for concrete reinforcement: Production of fibre, micromechanics, and durability, 172 (2018).
  16. 16. Ng S.C., Ismail N., Ali A., Sahari B., Yousof J.M., Experimental investigation on effective detection of delamination in GFRP composites using Taguchi method. Advances in Materials Science, 12(3) (2012).10.2478/v10077-012-0009-0
  17. 17. Surowska B., Bieniaś J.: Wytwarzanie wielowarstwowych struktur kompozytowych metodą autoklawową. Kompozyty (Composites), 10(2), (2010), in Polish
  18. 18. Imielińska K., Wojtyra R.: Wpływ absorpcji wody na właściwości laminatów winyloestrowych wzmocnionych włóknem aramidowym i szklanym. Kompozyty (Composites), 3(7) (2003), in Polish.
  19. 19. Lung C.Y., Sarfraz Z., Habib A., Khan A.S., Matinlinna J.P.: Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. Journal of the Mechanical Behavior of Biomedical Materials, 54 (2016).10.1016/j.jmbbm.2015.09.03326479428
  20. 20. Braga R.R., Pfeifer C.S., Sakaguchi R.L., Testing of Dental Materials and Biomechanics. [In] Craig’s Restorative Dental Materials, 13th Edition, [Ed] Sakaguchi R.L., Powers J.M, Elsevier Mosby 2012.
  21. 21. Gołaski L., Failure criteria for laminates under combined loading conditions, [In] Joint Seminary on Failure of Advanced Materials, [Ed] Francois D. and Golaski L., Paris – Kielce, 1996
  22. 22. Kielce University of Technology, 1996, s. 37 ÷61. Li W., Swain M.V., Li Q., Ironsid J., Steven G.P.: Fiber reinforced composite dental bridge. Part I: experimental investigation. Biomaterials vol. 25, No. 20, 2004.
  23. 23. ISO 4049:2009 Dentistry - Polymer - based restorative materials.
  24. 24. Karbhari V.M., Strassler H., Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dental Materials, 23(8) (2007).10.1016/j.dental.2006.08.00317084889
  25. 25. Camanho P.P., Davila C.G.: Mixed-mode decohesion finite elements for the simulation of delamination on composite materials, NASA/TM-2002-0211737, 2002.
  26. 26. Walczak A., Pieniak D., Niewczas A., Niewczas A.M. Kordos P., Study of ceramic-polymer composites reliability based on the bending strength test. Journal of KONBiN, 35(3) (2015).10.1515/jok-2015-0050
  27. 27. Niewczas A.M., Pieniak D., Ogrodnik P., Reliability analysis of strength of dental composites subjected to different photopolymerization procedures. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 14(3) (2012).
  28. 28. Leinfelder KF, Bayne SC, Swift Jr EJ., Packable composites: overview and technical considerations. J. Esthet. Dent., 11 (1999) 234–49.10.1111/j.1708-8240.1999.tb00405.x10825879
  29. 29. Topoliński T.: Analiza teoretyczna i badania kumulacji uszkodzeń zmęczeniowych konstrukcyjnych kompozytów polimerowych. Rozprawy nr 82, Bydgoszcz 1997, in Polish.
  30. 30. Hwang W., Han K.S., Fatigue of composite fatigue modulus concept and life prediction. Journal of Composite Materials, 20(3) (1986).10.1177/002199838602000203
  31. 31. Jones D.R.H., Ashby M.F., Engineering Materials: An Introduction to Microstructures, Processing and Design. Butterworth-Heinemann 2005.
  32. 32. LLoyd C.H., The fracture toughness of dental composites. Journal of Oral Rehabilitation, 11(4) (1984).10.1111/j.1365-2842.1984.tb00591.x6589385
  33. 33. Fani M., Farmani S., Bagheri R., Fracture toughness of resin composite under different modes and media: review of articles. Journal of Dental Biomaterials, 2(3) (2015).
  34. 34. Hamouda I.M., Hagag E.A., Evaluation the mechanical properties of nanofiled composite resin restortive material. Journal of Biomaterials and Nanobiotechnology, 3(3) (2012).
  35. 35. Soderholm K.J., Fracture of dental materials, [In] Applied Fracture Mechanics, [Ed] Belov A. InTech, 2012.10.5772/48354
  36. 36. Bełzowski A., Stasieńko J., Ziółkowski B., Kamińska A., Niektóre kryteria akceptacji defektów w kompozytach na przykładzie laminatu ciętego strumieniem wody. Kompozyty (Composites), 4(12) (2004), in Polish.
  37. 37. Karmaker A., Prasad A., Effect of design parameters on the flexural properties of fiber-reinforced composites. Journal of Materials Science Letter, 19 (2000).
  38. 38. Dyzia M., Dolata A., J., Śleziona J., Preliminary Analysis of Aluminum Matrix Compositions for Composites Reinforcement with Carbon Fibers, Steel Research International, 83(10), 2012.10.1002/srin.201100280
DOI: https://doi.org/10.1515/adms-2017-0034 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 77 - 91
Published on: Jul 28, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 D. Pieniak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.