Have a personal or library account? Click to login
Synthesis, Characterization and Their Antimicrobial Activities of Boron Oxide/Poly(Acrylic Acid) Nanocomposites: Thermal and Antimicrobial Properties Cover

Synthesis, Characterization and Their Antimicrobial Activities of Boron Oxide/Poly(Acrylic Acid) Nanocomposites: Thermal and Antimicrobial Properties

Open Access
|Apr 2018

References

  1. 1. Thomas V., Yallapu M.M., Sreedhar B., Bajpai S.K., A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid. Interface Sci., 315 (2007), 389–395.
  2. 2. Turhan Y., Alp Z.G., Alkan M., Doğan M., Preparation and characterization of poly(vinylalcohol)/modified bentonite nanocomposites. Microporous and Mesoporous Mater., 174 (2013), 144–153.10.1016/j.micromeso.2013.03.002
  3. 3. Hojjati B., Sui R., Charpentier P.A., Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer, 48 (2007), 5850-5858.
  4. 4. Wisniewska M., Nosal-Wiercinska A., Dabrowska I., Szewczuk-Karpisz K., Effect of the solid pore size on the structure of polymer film at the metal oxide/polyacrylic acid solution interface – Temperature impact. Microporous and Mesoporous Mater., 175 (2013), 92–98.
  5. 5. Bajpai M., Bajpai S.K., Gautam D. Investigation of regenerated cellulose/poly(acrylic acid) composite films for potential wound healing applications: A preliminary study. J. Appl. Chem., (2014), Article ID 325627.10.1155/2014/325627
  6. 6. Hu H., Campos J., Nair P.K., Electrically conductive CuS–poly(acrylic acid) composite coatings. J. Mater. Res., 11(3) (1996), 739-745.10.1557/JMR.1996.0089
  7. 7. Zhang S., Zhou Y.F., Nie W.Y., Song L.Y., Preparation of Fe3O4/chitosan/poly(acrylic acid) composite particles and its application in adsorbing copper ion (II). Cellulose, 19 (2012), 2081–2091.
  8. 8. Lecerf N., Mathur S., Shen H., Veith M., Hufner S., Chemical vapour and sol-gel syntheses of nano-composites and -ceramics using metal-organic precursors. Scr. Mater., 44(8-9) (2001), 2157-2160.10.1016/S1359-6462(01)00913-7
  9. 9. Kunitake N., Fujikawa S., Nanocopying as a means of 3D nanofabrication: scope and prospects. Aust J Chem., 56(10) (2003), 1001-1003.10.1071/CH03129
  10. 10. Lee T.W., Park O.O., Yoon J., Kim J.J., Polymer-layered silica nanocomposite light emitting devices. Adv. Mater. 13 (2001), 211-213.
  11. 11. McEuen P.L., Bockrath M., Cobden D.H., Lu J.G., Nanotechnology: principles and fundamentals. Microelectron Eng., 47(4) (1999), 417-420.10.1016/S0167-9317(99)00248-8
  12. 12. Rouhi J., Mahmud S., Naderi N., Raymond C.H., Mahmood M.R., Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett., 8 (2013), 364.10.1186/1556-276X-8-364376573223981366
  13. 13. Alizadeh M., Sharifianjazi F., Haghshenasjazi E., Aghakhani M., Rajabi L., Production of nanosized boron oxide powder by high-energy ball milling. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45 (2015), 11–14.10.1080/15533174.2013.797438
  14. 14. Pittoni P.G., Chang Y.Y., Lin S.Y., Interpretation of the peculiar temperature dependence of surface tension for boron trioxide. J. Taiwan. Inst. Chem. Eng., 43 (2012), 852–859.
  15. 15. Woods W.G., An Introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 102 (1994), 5-11.
  16. 16. Turhan Y., Dogan M., Alkan M., Poly(vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties. Ind. Eng. Chem. Res., 49 (2010), 1503–1513.
  17. 17. Töre İ., Ay N., The Characterization and production of amorphous boron oxide. 2. International Boron Congress. September 23-25, Eskişehir/TURKEY.
  18. 18. Moon O.M., Kang B.C., Lee S.B., Boo J.H., Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films, 464–465 (2004), 164–169.10.1016/j.tsf.2004.05.107
  19. 19. Moharram M.A., Rabie S.M., El-Gendy H.M., IR spectra of -irradiated PAA–PAAm complex. J Appl. Polym. Sci., 85(8) (2002), 1619–1623.10.1002/app.10702
  20. 20. Mohammed A.M., Radia N.D., Controlled release from crosslinked polyacrylic acid as drug delivery theophylline. Irq. Nat. J. Chem., 45 (2012), 67-85.
  21. 21. De la Fuente J.L., Wilhelm M., Spiess H.W., Madruga E.L., Fernandez-Garcia M., Cerrada M.L., Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer, 46 (2005), 4544–4553.
  22. 22. McGaugh M.C., Kottle S., The thermal degradation of poly(acrylic acid). J. Polym. Sci. B., 5(9) (1967), 817–820.10.1002/pol.1967.110050916
  23. 23. Dubinsky S., Grader G.S., Shter G.E., Silverstein M.S., Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym. Degrad. Stab., 86 (2004), 171-178.
  24. 24. Kızılduman B.K., Alkan M., Doğan M., Turhan Y., Al-pillared-montmorillonite (AlPMt)/Poly(methylmethacrylate)(PMMA) nanocomposites: the effects of solvent types and synthesis methods. Adv. Mat. Sci., 17(3) (2017), 5-23.10.1515/adms-2017-0012
  25. 25. Kausar A., Ullah W., Muhammad B., Siddiq M., Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites. Adv. Mat. Sci., 14(4) (2014) 61-74.10.2478/adms-2014-0022
  26. 26. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 28 (2003), 1539–1641.
DOI: https://doi.org/10.1515/adms-2017-0025 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 28 - 36
Published on: Apr 24, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 P. T. Beyli, M. Doğan, Z. Gündüz, M. Alkan, Y. Turhan, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.