Have a personal or library account? Click to login
Aortic Valve Geometry Modeling – Review Cover
By: K. Dawidowska  
Open Access
|Dec 2016

References

  1. 1. Thubrikar M. J., Labrosse M. R., Zehr K. J., Robicsek F., Gong G. G., Fowler B. L., Aortic root dilatation may alter the dimensions of the valve leaflets. Eur. J. Cardio-thoracic Surg. 28 (2005) 850-855.
  2. 2. Ovcharenko E. A., Klyshnikov K. U., Vlad A. R., Sizova I. N., Kokov A. N., Nushtaev D. V., Yuzhalin A. E., Zhuravleva I. U., Computer-aided design of the human aortic root. Comput. Biol. Med. 54 (2014) 109-115.
  3. 3. Dwyer H. A., Matthews P. B., Azadani A., Jaussaud N., Ge L., Guy T. S., Tseng E. E., Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9 (2009) 301-308.
  4. 4. Ovcharenko E. A., Klyshnikov K. U., Yuzhalin A. E., Savrasov G. V., Kokov A. N., Batranin A. V., Ganyukov V. I., Kudryavtseva Y. A., Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis. Comput. Biol. Med. 69 (2016) 29-36.
  5. 5. Toeg H. D., Abessi O., Al-Atassi T., de Kerchove L., El-Khoury G., Labrosse M., Boodhwani M., Finding the ideal biomaterial for aortic valve repair with ex??vivo porcine left heart simulator and finite element modeling. J. Thorac. Cardiovasc. Surg. (2014) 1-7.10.1016/j.jtcvs.2014.05.004
  6. 6. Labrosse M. R., Boodhwani M., Sohmer B., Beller C. J., Modeling leaflet correction techniques in aortic valve repair: A finite element study. J. Biomech. 44 (2011) 2292-2298.
  7. 7. Cheng A., Dagum P., Miller D. C., Aortic root dynamics and surgery: from craft to science. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362 (2007) 1407-1419.10.1098/rstb.2007.2124
  8. 8. Hammer P. E., Chen P. C., Del Nido P. J., Howe R. D., Computational model of aortic valve surgical repair using grafted pericardium. J. Biomech. 45 (2012) 1199-1204.
  9. 9. Grande-Allen K. J., Cochran R. P., Reinhall P. G., Kunzelman K. S., Finite-element analysis of aortic valve-sparing: Influence of graft shape and stiffness. IEEE Trans. Biomed. Eng. 48 (2000) 647-659.10.1109/10.923783
  10. 10. Grande-Allen K. J., Cochran R. P., Reinhall P. G., Kunzelman K. S., Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119 (2000) 753-763.10.1016/S0022-5223(00)70011-0
  11. 11. Schoenhagen P., Tuzcu E. M., Kapadia S. R., Desai M. Y., Svensson L. G., Three-dimensional imaging of the aortic valve and aortic root with computed tomography: New standards in an era of transcatheter valve repair/implantation. Eur. Heart J. 30 (2009) 2079-2086.
  12. 12. Dwyer H. A., Matthews P. B., Azadani A., Ge L., Guy T. S., Tseng E. E. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J. Thorac. Cardiovasc. Surg. 138 (2009) 1227-1233.
  13. 13. Totaro P., Morganti S., Ngo Yon C. L., Dore R., Conti M., Auricchio F., Vigano M., Computational finite element analyses to optimize graft sizing during aortic valve-sparing procedure. J Hear. Valve Dis 21 (2012) 141-147.
  14. 14. Sacks M. S., Schoen F. J., Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62 (2002) 359-371.
  15. 15. Swanson W. M., Clark R. E., Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure. Circ. Res. 35 (1974) 871-882.
  16. 16. Labrosse M. R., Beller C. J., Robicsek F., Thubrikar M. J., Geometric modeling of functional trileaflet aortic valves: Development and clinical applications. J. Biomech. 39 (2006) 2665-2672.
  17. 17. Labrosse M. R., Lobo K., Beller C. J., Structural analysis of the natural aortic valve in dynamics: From unpressurized to physiologically loaded. J. Biomech. 43 (2010) 1916-1922.
  18. 18. Makhijani V. B., Yang H. Q., Dionne P. J., Thubrikar M. J., Three Dimensional Coupled Fluid Structure Simulation of Pericardial Bioprosthetic Aortic Valve Function. ASAIO Jurnal 43 (1997) 387-395.
  19. 19. Lim K. H., Candra J., Yeo J. H., Duran C. M. G., Flat or curved pericardial aortic valve cusps: a finite element study. J. Heart Valve Dis. 13 (2004) 792-797.
  20. 20. Koch T. M., Reddy B. D., Zilla P., Franz T., Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput. Methods Biomech. Biomed. Engin. 13 (2010) 225-234.
  21. 21. Joda A., Jin Z., Haverich A., Summers J., Korossis S., Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. J. Biomech. 49 (2016) 2502-2512.
  22. 22. Maxfield M. W., Cleary M. A., Breuer C. K., Tissue-Engineering Heart Valves. Academic Press Chapter 40 (2014) 813-833.
  23. 23. De Hart J., Peters G. W. M., Schreurs P. J. G., Baaijens F. P. T., Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J. Biomech. 37 (2004) 303-311.
  24. 24. Sahasakul Y., Edwards W. D., Naessens J. M., Tajik A. J., Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62 (1988) 424-430.
  25. 25. Nicosia M. A., Cochran R. P., Kunzelman K. S., Coupled fluid-structure finite element modeling of the aortic valve and root. Engineering Med. Biol. 2 (2002)1278-1279.
  26. 26. Wang L., Korossis S., Ingham E., Fisher J., Jin Z., Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications. J. Heart Valve Dis. 17 (2008) 700-709.
  27. 27. Grande K. J., Cochran R. P., Reinhall P. G., Kunzelman K. S., Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann. Biomed. Eng. 26 (1998) 534-545.10.1114/1.122
  28. 28. Kunzelman K. S., Grande K. J., David T. E., Cochran R. P., Verrier E. D., Aortic root and valve relationships: Impact on surgical repair. J. Thorac. Cardiovasc. Surg. 107 (1994) 162-170.10.1016/S0022-5223(94)70465-1
  29. 29. Vollebergh F. E., Becker E., Minor congenital variations of cusp size in tricuspid aortic valves. Possible link with isolated aortic stenosis. Br. Heart J. 39 (1977) 1006-1011.
  30. 30. Cook R. D., Malkus D. S., Plesha M. E., Witt R. J. W., Concept and Applications of Finite Element Analysis. John Wiley & Sons, Inc. (2002)
  31. 31. Hammer P. E., Pacak C. A., Howe R. D., del Nido P. J., Straightening of curved pattern of collagen fibers under load controls aortic valve shape. J. Biomech. 47 (2014) 341-346.
  32. 32. Ionasec R. I., Voigt I., Georgescu B., Wang Y., Houle H., Vega-Higuera F., Navab N., Comaniciu D., Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans. Med. Imaging 29 (2010) 1636-1651.
  33. 33. Soncini M., Votta E., Zinicchino S., Burrone V., Mangini A., Lemma M., Antona C., Redaelli A., Aortic root performance after valve sparing procedure: A comparative finite element analysis. Med. Eng. Phys. 31 (2009) 234-243.
  34. 34. Morganti S., Valentini A., Favalli V., Serio A., Gambarin F. I., Vella D., Mazzocchi L., Massetti M., Auricchio F., Arbustini E., Aortic root 3D parametric morphological model from 2D-echo images. Comput. Biol. Med. 43 (2013) 2196-2204.
  35. 35. Haj-Ali R., Marom G., Ben Zekry S., Rosenfeld M., Raanani E., A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45 (2012) 2392-2397.
  36. 36. Rankin J. S., Dalley A. F., Crooke P. S., Anderson R. H., A hemispherical model of aortic valvar geometry. J. Heart Valve Dis. 17 (2008) 179-186.
  37. 37. Lansac E., Lim H. S., Shomura Y., Lim K. H., Rice N. T., Goetz W., Acar C., Duran C. M. G., A four-dimensional study of the aortic root dynamics. Eur. J. Cardio-thoracic Surg. 22 (2002) 497-503.10.1016/S1010-7940(02)00405-0
  38. 38. De Hart J., Peters G. W. M., Schreurs P. J. G., Baaijens F. P. T., A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36 (2003) 103-112.
  39. 39. Morsi Y. S., Yang W. W., Wong C. S., Das S., Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J. Artif. Organs 10 (2007) 96-103.
  40. 40. Weinberg E. J., Kaazempur Mofrad M. R., Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7 (2007) 140-155.
  41. 41. Ranga A., Bouchot O., Mongrain R., Ugolini P., Cartier R., Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact. Cardiovasc. Thorac. Surg. 5 (2006) 373-378.10.1510/icvts.2005.121483
  42. 42. Katayama S., Umetani N., Sugiura S., Hisada T., The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J. Thorac. Cardiovasc. Surg. 136 (2008) 1528-1535.
  43. 43. Carmody C. J., Burriesci G., Howard I. C., Patterson E., An approach to the simulation of fluid-structure interaction in the aortic valve. J. Biomech. 39 (2006) 158-169.
  44. 44. Howard I. C., Patterson E., Yoxall A., On the opening mechanism of the aortic valve: some observations from simulations. J. Med. Eng. Technol. 27 (2003) 259-266.
  45. 45. Gnyaneshwar R., Kumar R. K., Balakrishnan K. R., Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73 (2002) 1122-1129.
  46. 46. Marom G., Haj-Ali R., Raanani E., Schäfers H. J., Rosenfeld M., A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50 (2012) 173-182.
  47. 47. Marom G., Haj-Ali R., Rosenfeld M., Schäfers H. J., Raanani E., Aortic root numeric model: Annulus diameter prediction of effective height and coaptation in post-aortic valve repair. J. Thorac. Cardiovasc. Surg. 145 (2013) 9-11.
  48. 48. Kalyana Sundaram G. B., Balakrishnan K. R., Kumar R. K., Aortic valve dynamics using a fluid structure interaction model – The physiology of opening and closing. J. Biomech. 48 (2015) 1737-1744.
  49. 49. Stevanella M., Votta E., Lemma M., Antona C., Redaelli A., Finite element modelling of the tricuspid valve: A preliminary study. Med. Eng. Phys. 32 (2010) 1213-1223.10.1016/j.medengphy.2010.08.013
  50. 50. Smuts A. N., Blaine D. C., Scheffer C., Weich H., Doubell A. F., Dellimore K. H., Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. Mater. 4 (2011) 85-98.
  51. 51. Burriesci I. C. H. G., Patterson E. A., Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J. Med. Eng. Technol. 23 (1999) 203-215.
  52. 52. Li J., Luo X. Y., Kuang Z. B., A nonlinear anisotropic model for porcine aortic heart valves.,” J. Biomech. 34 (2001) 1279-1289.10.1016/S0021-9290(01)00092-6
  53. 53. Freed A. D., Einstein D. R., Vesely I., Invariant formulation for dispersed transverse isotropy in aortic heart valves: An efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4 (2005) 100-117.10.1007/s10237-005-0069-816133588
  54. 54. Patterson E. A., Howard I. C., Thornton M. A., A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle.,” J. Med. Eng. Technol. 20 (1996) 95-108.10.3109/030919096090083878877750
  55. 55. Okamoto R. J., Wagenseil J. E., DeLong W. R., Peterson S. J., Kouchoukos N. T., Sundt T. M., Mechanical properties of dilated human ascending aorta. Ann. Biomed. Eng. 30 (2002) 624-635.
  56. 56. Ferraresi C., Bertetto M., Mazza L., Maffiodo D., Franco W., One-dimensional experimental mechanical characterisation of porcine aortic root wall. Med. Biol. Eng. Comput. 37 (1999) 202-207.
  57. 57. Ferraresi C., Manuello Bertetto A., Mazza L., Franco W., Maffiodo D., Opening mechanics of the aortic root: non homogeneous and non isotropic F.E.M. model of biological structure. Mech. Res. Commun. 25 (1998) 405-413.
  58. 58. Azadani A. N., Chitsaz S., Matthews P. B., Jaussaud N., Leung J., Tsinman T., Ge L., Tseng E. E., Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann. Thorac. Surg. 93 (2012) 87-94.
DOI: https://doi.org/10.1515/adms-2016-0020 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 29 - 37
Published on: Dec 30, 2016
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 K. Dawidowska, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.