Have a personal or library account? Click to login
A Study on the Effect of Different Activating Flux on A-TIG Welding Process of Incoloy 800H Cover

A Study on the Effect of Different Activating Flux on A-TIG Welding Process of Incoloy 800H

Open Access
|Oct 2016

References

  1. 1. http://www.specialmetals.com/assets/documents/alloys/incoloy/incoloy-alloy-800.pdf
  2. 2. Paulo J. Modenesi., EustaÂquio R. ApolinaÂrio., Iaci M. Pereira., TIG welding with single-component fluxes. Journal of Materials Processing Technology, 99 (2000), 260-265.
  3. 3. Kuang-Hung Tseng, Chih-Yu Hsu. Performance of activated TIG process in austenitic stainless steel welds. Journal of Materials Processing Technology, 211 (2011), 503–512.
  4. 4. Xu Y.L., Dong Z.B., Wei Y.H., Yang C.L., Marangoni convection and weld shape variation in A-TIG welding process. Theoretical and Applied Fracture Mechanics, 48 (2007), 178–186.
  5. 5. Chunli YANG., Sanbao LIN., Fengyao LIU., Lin WU., Qingtao ZHANG., Research on the Mechanism of Penetration Increase by Flux in A-TIG Welding. Journal of Materials Science & Technology, 19(1) (2003), 225-227.
  6. 6. Sakthivel T., Vasudevan M., Laha K., Parameswaran P., Chandravathi K.S., Mathew M.D., Bhaduri A.K., Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes. Materials Science and Engineering: A, 528 (2011), 6971–6980.
  7. 7. Devendranath Ramkumar K., Jelli Lakshmi Narasimha Varma., Gangineni Chaitanya., Ayush Choudhary., Arivazhagan N., Narayanan S., Effect of autogeneous GTA welding with and without flux addition on the microstructure and mechanical properties of AISI 904 L joints. Materials Science and Engineering: A, 636 (2015), 1-9.
  8. 8. Devendranath Ramkumar K., Monoj Kumar B., Gokul Krishnan M., Sidarth Dev., Aman Jayesh Bhalodi., Arivazhagan N., Narayanan S., Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718. Materials Science and Engineering: A, 639 (2015), 234–244.
  9. 9. Shyu S.W., Huang HY., Tseng K H., Chou C.P., Study of the Performance of Stainless Steel A-TIG Welds. Journal of Materials Engineering and Performance, 17 (2008), 193–201.10.1007/s11665-007-9139-7
  10. 10. Hsuan-Liang Lin., Tong-Min Wu., Ching-Min Cheng., Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds. Journal of Materials Engineering and Performance, 23 (2014), 125–132.
  11. 11. Sayiram G., Arivazhagan N., Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel. Materials Characterization, 102 (2015), 180–188.
  12. 12. Rui-Hua ZHANG., Ji-Luan PAN., Seiji KATAYAMA., The mechanism of penetration increase in A-TIG welding. Frontiers of Materials Science, 5(2) (2011), 109–118.10.1007/s11706-011-0125-5
  13. 13. Tsann-Shyi Chern., Kuang-Hung Tseng., Hsien-Lung Tsai., Study of the characteristics of duplex stainless steel activated tungsten inert gas welds. Materials and Design, 32 (2011), 255–263.
  14. 14. Kuang-Hung Tseng., Chih-Yu Hsu., Performance of activated TIG process in austenitic stainless steel welds. Journal of Materials Processing Technology, 211 (2011), 503–512.
  15. 15. Hsuan-Liang Lin., Tong-Min Wu., Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds. Materials and Manufacturing Processes, 27 (2012), 1457–1461.
  16. 16. Kuang-Hung Tseng., Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technology, 233 (2013), 72–79.
  17. 17. Fink C., Keil D., Zinke M., Evaluation of hot cracking susceptibility of nickel-based alloys by the pvr test. Welding in the World, 56(7) (2012), 37-43.10.1007/BF03321363
  18. 18. Borland J C., Younger R N., Some aspects of cracking in welded Cr–Ni austenitic steels. British Welding Journal, 7 (1960), 22–59.
  19. 19. Matsuda F., Nakagawa H., Sorada K., Dynamic observation of solidification and solidification cracking during welding with optical microscope. Transactions of the Japan Welding Research Institutetute, 11 (1982), 67–77.
  20. 20. Hall EO., The Deformation and Aging of Mild steel. Proceedings of the Physical Society, 64B (1951), 747-753.10.1088/0370-1301/64/9/303
  21. 21. Garstone J., Johnson FA., Impact Properties of Mild Steel Weld Metals. British Welding Journal, 10(5) (1963), 224.
  22. 22. Sindo Kou.: Welding Metallurgy. Second Edition. John Wiley & Sons, Incorporated, Hoboken, NJ, USA, 2003.
  23. 23. He L Z., Zheng Q., Sun X F., Hou GC., Guan H R., Hu ZQ., M23C6 precipitation behavior in a Ni-base superalloy M963. Journal of Materials Science, 40 (11) (2005), 2959-2964.10.1007/s10853-005-2418-5
  24. 24. Sireesha M., Shankar V., Shaju K Albert., Sundaresan S., Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800. Materials Science and Engineering: A, 292 (1) (2000), 74-82.10.1016/S0921-5093(00)00969-2
  25. 25. Arun Kumar Srirangan., Sathiya Paulraj., Multi-response optimization of process parameters for TIG welding of Incoloy 800HT by Taguchi grey relational analysis. Engineering Science and Technology, an International Journal. doi:10.1016/j.jestch.2015.10.003.10.1016/j.jestch.2015.10.003
DOI: https://doi.org/10.1515/adms-2016-0014 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 26 - 37
Published on: Oct 18, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 S.P. Sridhar, S. Arun Kumar, P. Sathiya, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.