Have a personal or library account? Click to login
Factorial Design based Optimisation of Crevice Corrosion for Type 304 Stainless Steel in Chloride Solutions Cover

Factorial Design based Optimisation of Crevice Corrosion for Type 304 Stainless Steel in Chloride Solutions

Open Access
|Aug 2016

References

  1. 1 Du, N., Tian, W.M., Zhao, Q. and Chen, S.B., Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5% NaCl solution. Acta Metallurgica Sinica, 48 (7) (2012), 807–814.10.3724/SP.J.1037.2012.00005
  2. 2 Kazuki, F., Nobuko, Y., Minato, E. and Masayuki, M., Anodic behaviour of stainless steel substrate in organic electrolyte solutions containing different lithium salts, Electrochimica Acta. 140 (2014), 125–131.10.1016/j.electacta.2014.03.136
  3. 3 Tian, W., Li, S., Du, N., Chen, S. and Wu, Q., Effect of applied potential on stable pitting of 304 stainless steel. Corrosion Science, 93(1) (2015), 242-255.10.1016/j.corsci.2015.01.034
  4. 4 Heppner, K.L., Evitts, R.W., and Postlethwaite, J., Prediction of the crevice corrosion incubation period of passive metals at elevated temperatures. Part I. Mathematical model. Canadian Journal of Chemical Engineering, 1(8) (2002), 849–856.10.1002/cjce.5450800508
  5. 5 Kennell G. F., Evitts R W. and Heppner K. L., A critical crevice solution and IR drop crevice corrosion model. Corrosion Science, 1(5) (2008), 1716–1725.10.1016/j.corsci.2008.02.020
  6. 6 Hu, Q., Zhang, G., Qiu., Y. and Guo, X., The crevice corrosion behaviour of stainless steel in sodium chloride solution. Corrosion Science, 53(12) (2011), 4065-4072.10.1016/j.corsci.2011.08.012
  7. 7 Matjaž, T., Franc, T. and Matjaž G., Crevice corrosion of stainless-steel fastening components in an indoor marine-water basin. MTAEC9, 46(4) (2012), 423-428.
  8. 8 Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., Turgoose S., Measures for the detection of localized corrosion with electrochemical noise. Electrochimica Acta, (46) (2001), 3665–3674.10.1016/S0013-4686(01)00645-4
  9. 9 Li, W., Yuan, B., Wang, C., Li, L. and Chen S., Dynamic sensing of localized corrosion at the metal/solution interface. Sensors, 12 (2012), 4962-4973.
  10. 10 Szklarska-Smialowska Z. Pitting corrosion of metals, in: National Association of Corrosion Engineers, Houston, TX 1(1) (1996), 69-72.
  11. 11 Pickering, H.W., Important early developments and current understanding on the IR mechanism of localized corrosion. Journal of Electrochemical Society, 15(1) (2003), K1–K12.10.1149/1.1565142
  12. 12 Lee, T. S., Kain, R. M. and Oldfield, J.W., Effect of environmental variables on crevice corrosion of stainless steels in seawater. Material Performance, 2(3) (2004), 7-9.
  13. 13 Sharland, S. M. and Tasker, P. W. (1988) A mathematical model of crevice and pitting corrosion. I. The physical model. Corrosion Science. 2(8), 603–620.10.1016/0010-938X(88)90027-3
  14. 14 Walton, J. C., Cragnolino, G. and Kalandros, S. K. (1996) A numerical model of crevice corrosion for passive and active metals. Corrosion Science, 3(8), 1–18.10.1016/0010-938X(96)00107-2
  15. 15 White, S. P., Weir, G. J. and Laycock, N. J., Calculating chemical concentrations during the initiation of crevice corrosion. Corrosion Science, 4(2) (2000) 605–629.10.1016/S0010-938X(99)00097-9
  16. 16 Yuki, O., Jumpei, T., Kenji, A., Hiroshi, Y., and Keisuke H., Numerical method for time - dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method. Corrosion Science, 6(3) (2012), 210–224.10.1016/j.corsci.2012.06.001
  17. 17 De Jong, L.A. and Kelly, R.G., The Demonstration of the Microfabrication of Rigorously Defined Crevices for the Investigation of Crevice Corrosion Scaling Laws, in Critical Factors in Localized Corrosion III, The Electrochemical Society: Pennington, NJ. (1999), 678-688.
  18. 18 Postlethwaite, J., Evitts, R. W., Watson, M. K., Modelling the initiation of crevice corrosion of passive alloys at elevated temperature. NACE International, 19(2) (1995), 367 – 377.
  19. 19 Hepsen, R. and Kaya, Y., Optimization of membrane fouling using experimental design: an example from dairy wastewater treatment, Industrial and Engineering Chemistry Research. 51 (49) (2012),16074–16084.10.1021/ie302450s
  20. 20 Gu, T., Chen, Z., Jiang, X., Zhou, L., Liao, Y., Duan, M. and Wang, H., Synthesis and inhibition of N-alkyl-2-(4-hydroxybut-2-ynl) pyridinium bromide for mild steel in acid solution: Box-Behnken design optimisation and mechanism probe. Corrosion Science, 90 (2015), 118-132.
  21. 21 ASTM Standard G78 (2007). Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base Stainless Alloy in Seawater and Other Chloride-Containing Aqueous Environments.
  22. 22 Cai, B., Lui, Y., Tian, X., Wang, F., Li, H. and Ji, R., An experimental study of crevice behaviour of 316L stainless steel in artificial seawater. Corrosion Science, 52 (2010), 3235-3242.
  23. 23 Yang, Y. Z., Jiang, Y. M. and Li, J., In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution. Corrosion Science, 76 (2013), 163-169.
DOI: https://doi.org/10.1515/adms-2016-0005 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 5 - 20
Published on: Aug 2, 2016
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 O.O. Ogunleye, A.G. Adeniyi, M.O. Durowoju, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.