Have a personal or library account? Click to login
Graphene as a Material for Solar Cells Applications Cover

Graphene as a Material for Solar Cells Applications

Open Access
|Dec 2015

References

  1. 1. Boehm H.P., Setton R., Stumpp E. Nomenclature and terminology of graphite intercalation compounds, Pure and Applied Chemistry 66 (1994), 1893-1901.10.1351/pac199466091893
  2. 2. Centrum grafenu i innowacyjnych technologii; Biuletyn Politechniki Warszawskiej; 2014.
  3. 3. Scientific American nr 298, Carbon Wonderland, 2008, 90-97.10.1038/scientificamerican0408-90
  4. 4. Science nr 324, Graphene: Status and prospects (2009), 1530-1534.10.1126/science.1158877
  5. 5. http://nobelprize.org/nobel_prizes/physics/laureates/2010/sciback_phy_10_2.pdf.
  6. 6. Novoselov K.S. et al., Two-dimensional atomic crystals, Proc. Natl Acad. Sci., USA.
  7. 7. Ghavanini F.A., Theander H., Graphene feasibility and foresight study for transport infrastructures; Chalmers Industriteknik 2015.
  8. 8. Kumar N.A., Dar M.A., Gul R. Jong-Beom Baek, Graphene and molybdenum disulfide hybrids: synthesis and applications; Materials Today 18(5) (2015).10.1016/j.mattod.2015.01.016
  9. 9. Soldano C., Mahmood A., Dujardin E., Production, properties and potential of grapheme; Carbon 48 (2010), 2127-2150.
  10. 10. Frank IW, Tanenbum DM, Van der Zande AM, McEuen P., Mechanical properties of suspensed grapheme sheets, In 51st International conference on electron, ion, and phton beam technology and nanofabrication, AVS Amer Inst Physics 207, 2558-2561.
  11. 11. Bonaccorso F., Sun Z., Hasan T., Ferrari A.C., Nature photonics, 2010.
  12. 12. Santanu Das, Pitchaimuthu Sudhagar and Yong Soo Kang, Wonbong Choia; Graphene synthesis and application for solar cells; J. Mater. Res. 2013.
  13. 13. Stankovich S., Dikin D., Dommett G., Kohlhaas K., Zimney E, Stach E., Piner R., SonBinh T. Nguyen and Ruoff R., Graphene-based composite materials; Nature 442 (2006), 282-286.
  14. 14. Bonaccorso F., Lombardo A., Hasan T., Sun Z., Colombo L., Ferrari A.C., Production and processing of graphene and 2d crystals; Materials Today 15(12) (2012), 564-589.10.1016/S1369-7021(13)70014-2
  15. 15. Choon-Ming S., Siang-Paiao Chai, Abdul Rahman Mohamed; Mechanisms of graphene growth by chemical vapour deposition on transition metals, Carbon 70, 1-21 (2014).10.1016/j.carbon.2013.12.073
  16. 16. Mattevi C., Kim H., Chhowalla M., A review of chemical vapour deposition of grapheme on copper, , J. Mater. Chem., 21, 3324-3334, (2011).10.1039/C0JM02126A
  17. 17. Kula P., Pietrasik R., Dybowski K., Atraszkiewicz R., Kaczmarek L., Kazimierski D., Niedzielski P., Modrzyk W., The growth of a polycrystalline graphene from a liquid phase, Nanotech 1 (2013), 210 - 212.
  18. 18. Chung K., Lee C.H,. Yi G.C., Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices Science 330 (2010) 655-657.
  19. 19. Tetlow H., Posthuma de Boer J. et al; Growth of epitaxial graphene: Theory and experiment, Physics reports, 542 (2014), 195-295.10.1016/j.physrep.2014.03.003
  20. 20. Hasan, T., Solution‐phase exfoliation of graphite for ultrafast photonics, Phys Status Solidi B. 247 (2010) 2953-2957.10.1002/pssb.201000339
  21. 21. Liao K.H., Mittal A., Bose S., Leighton C., Mkhoyan K.A., Macosko C.V., Aqueous only route toward graphene from graphite oxide, ACS Nano 5 (2011), 1253-1258.10.1021/nn102896721271739
  22. 22. Wang H. J., Robinson J., Li X., Dai., Solvothermal Reduction of Chemically Exfoliated Graphene Sheets, J. Am. Chem. Soc. 131 (2009), 9910-9911.10.1021/ja904251p19580268
  23. 23. Hiura H., Lee M.V., Tyurnina A.V., Tsukagoshi K., Liquid phase growth of graphene on silicon carbide, Carbon 50 (2012), 5076-5084.10.1016/j.carbon.2012.06.047
  24. 24. Kolodziejczyk L., Kula P., Szymański W., Atraszkiewicz R., Dybowski K., Pietrasik R., Frictional behaviour of polycrystalline graphene grown on liquid metallic matrix, Tribology International 12 (2014), 003.
  25. 25. Zhang Y., Zhang L., Zhou C., Review of Chemical Vapor Deposition of Graphene and Related Applications, Acc. Chem. Res. 46 (2013), 2329-2339.10.1021/ar300203n23480816
  26. 26. Markvart T., Castaner L., Solar Cells: Materials, Manufacture and Operation; Elsevier, Oxford 2005.
  27. 27. Jarzębski Z.M., Energia słoneczna, konwersja fotowoltaiczna. Państwowe Wydawnictwo Naukowe, Warszawa 1990.
  28. 28. Centurioni E., Summonte C., Optical an open source program for the optical simulation of multilayer systems, 22th EPVSEC, Milano, Italy 2007.
  29. 29. Park H, Chang S., Smith M., Gradecak S., Kong J., Interface engineering of grapheme for universal applications as both anode and cathode in organic photovoltaics, Scientific reports 3 (2013), 1581- 2013.10.1038/srep01581361380323545570
  30. 30. Shia E., Lib H., Xua W., Wua S., Weic J., Fang F., Cao A., Improvement of graphene-Si solar cells by embroidering grapheme with a carbon nanotube spider-web; Nano Energy 2015 - article in press.10.1016/j.nanoen.2015.08.018
  31. 31. Chandramika Bora, Chandrama Sarkar, Kiron J. Mohan, Swapan Dolui; Polythiophene /graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells , Electrochimica Acta 03/2015; 157.10.1016/j.electacta.2014.12.164
  32. 32. Yan H., Wang J., Feng B, Duan K, Weng J., Graphene and Ag nanowires co-modified photoanodes for high-efficiency dye-sensitized solar cells, Solar Energy 122 (2015), 966-975. 10.1016/j.solener.2015.10.026
  33. 33. Review of Chemical Vapor Deposition of Graphene and Related Applications, Accounts of Chemical Research; 46(10) (2013) 2329-2339.10.1021/ar300203n
  34. 34. Qian Zhang, Xiangjian Wan, Fei Xing, Lu Huang, Guankui Long, Ningbo Yi, Wang Ni, Zhibo Liu, Jianguo Tian, Yongsheng Chen: Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Lett. 6(7) (2013), 478-484.10.1007/s12274-013-0325-7
  35. 35. Xu, Y.; Long, G.; Huang, L.; Huang, Y.; Wan, X.; Ma, Y.; Chen, Y. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48 (2010), 3308-3311.
  36. 36. Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solutionprocessed graphene transparent electrodes. Appl. Phys. Lett., 92 (2008), 263-302.
  37. 37. Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett., 92 (2008), 233-305.
  38. 38. Jung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Lowtemperature solution processing of graphene-carbon nanotube hybrid materials for highperformance transparent conductors. Nano Lett., 9 (2009), 1949-1955.
  39. 39. Shao-Sian Li,Kun-Hua Tu,Chih-Cheng Lin,Chun-Wei Chen,and Manish Chhowalla; Solutionprocessable grapheme oxide as an efficient hole transport layer in polymer solar cells; American Chemical Society 4 (6), 3169-317410.1021/nn100551j20481512
  40. 40. Jacob Tse-Wei Wang, James M. Ball, Eva M. Barea, Antonio Abate, Jack A. Alexander-Webber, Jian Huang, Michael Saliba, Ivan Mora-Sero, Juan Bisquert, Henry J. Snaith, and Robin J. Nicholas; Low-Temperature Processed Electron Collection Layers of Graphene / TiO2 Nanocomposites in Thin Film Perovskite Solar Cells; Nano Letters, 14 (2014), 724−730.10.1021/nl403997a24341922
  41. 41. Shemella P., Nayak S.K., Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Appl. Phys. Lett. 94, (2009), 032-10110.1063/1.3070238
  42. 42. Chang D.W., Choi H.J., Filer A., Baek J.B., Journal of Materials Chemistry A, 31, 2014.
  43. 43. Bernardi M., Palummo M., Grossman J.C., Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials, Nano letters, 2013.10.1021/nl401544y23750910
DOI: https://doi.org/10.1515/adms-2015-0024 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 67 - 81
Published on: Dec 30, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 M. Czerniak-Reczulska, A. Niedzielska, A. Jędrzejczak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.