Have a personal or library account? Click to login
Estimation of Young’s Modulus of the Porous Titanium Alloy with the Use of Fem Package Cover

Estimation of Young’s Modulus of the Porous Titanium Alloy with the Use of Fem Package

By: G. Rotta,  T. Seramak and  K. Zasińska  
Open Access
|Dec 2015

References

  1. 1. Arabnejad Khanoki S., Pasini D.: Multiscale design and multiobjective optimization of orthopaedic hip implants with functionally graded cellular material. Journal of Biomechanical Engineering 134 (2012).10.1115/1.400611522482684
  2. 2. Bram M., Schiefer H., Bogdanski D. et al.: Implant surgery: How bone bonds to PM titanium. Metal Powder Report 61 (2006) 26-28, 30-31.
  3. 3. Biomet: Regenerex Brochure, Warsaw, 2008.
  4. 4. Dabrowski B., Swieszkowski W., Godlinski D., Kurzydlowski K. J.: Highly porous titanium scaffolds for orthopaedic applications. J. of Biomedical Materials Research Part B 95A (2012) 53-61.
  5. 5. Deville S.: Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities. Materials 3 (2010) 1913-1927.
  6. 6. Dezfuli S.N., Sadrnezhaad S.K. i in.: Fabrication of biocompatible titanium scaffolds using space holder technique. J Mater Sci Mater Med. 23 (2012) 2483-2488.
  7. 7. Li J.P., Wijn J.R., van Blitterswijk C. A., de Groot K.: Comparison of Porous Ti6Al4V Made by Sponge Replication and Directly 3D Fiber Deposition and Cancellous Bone. Key Engineering Materials 330-332 (2007) 999-1002.
  8. 8. Li R., Shi Y., Wang Z. i in.: Densification behaviour of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science 256 (2010) 4350-4356.
  9. 9. Lin C.-Y., Wirtz T., LaMarca F., Hollister S.J: Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Materials Research Part A 83A (2007) 272-279.
  10. 10. Lindner M., Hoeges S, Meiners W. i in.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. Journal of Biomedical Materials Research Part A 97A (2011) 466-471.
  11. 11. Liu F.-H., Lee R.-T., Lin W.-H, Liao Y.-S.: Selective laser sintering of bio-metal scaffold. Procedia CIRP 5 (2013) 83 - 87.
  12. 12. Maya A.E., Grana D.R., Kokubu G.A. i in.: Zr-Ti-Nb porous alloys for biomedical application. Materials Science and Engineering C 32 (2012) 321-329.
  13. 13. Rotta G., Seramak T.: On the necessity of experimental verification of numerical results in biomedical applications. Proceedings of the XIX National Conference Applications of Mathematics and Biology and Medicine, Gdansk, Poland, 2013, pp. 78-83.
  14. 14. Warnke P. H., Douglas T, Wollny P i in.: Rapid Prototyping: Porous Titanium Alloy Scaffold Produced by Selective Laser Melting for Bone Tissue Engineering. Tissue Engineering 15 (2009) 115-124.
  15. 15. Yavari S.A., Wauthle R., Riemslag A.C. i in.: Fatigue behaviour of porous biomaterials manufactured using selective laser melting. Materials Science and Engineering C 33 (2013) 4849-4858.
  16. 16. Zimmer, Trabecular Metal Brochure, Carlsbad, 2012.
DOI: https://doi.org/10.1515/adms-2015-0020 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 29 - 37
Published on: Dec 30, 2015
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 G. Rotta, T. Seramak, K. Zasińska, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.