Have a personal or library account? Click to login
Plastic Deformation and Softening of the Surface Layer of Railway Wheel Cover

Plastic Deformation and Softening of the Surface Layer of Railway Wheel

By: Z. Ławrynowicz  
Open Access
|Dec 2015

References

  1. 1. Alwahdi F.A.M., Kapoor A., Franklin F.J.: Subsurface microstructural analysis and mechanical properties of pearlitic rail steels in service. Wear 302 (2013), 1453-1460.
  2. 2. Cvetkovski K., Ahlström J.: Characterisation of plastic deformation and thermal softening of the surface layer of railway passenger wheel treads. Wear 300 (2013), 200-204.
  3. 3. Murawa F.: Radsätze für Schienenfahrzeuge - grundsätzliche Gedanken zur Dimensionierung. EI - Eisenbahningenieur 55 (1/2004), 40-47.
  4. 4. Poschmann I., Heermant C.: Werkstoffe für rollendes Bahnmaterial - Gefüge und mechanische Eigenschaften. EI - Eisenbahningenieur 53 (8/2002), 47-50.
  5. 5. Standard: EN 13262+A2 AUGUST 2011
  6. 6. Cvetkovski K., Ahlström J., Karlsson B.: Thermal softening of fine pearlitic steel and its effect on the fatigue behaviour. Procedia Engineering 2 (2010), 541-545.
  7. 7. Robles Hernándeza F.C. at all: Properties and microstructure of high performance wheels. Wear 271 (2011), 374-381.10.1016/j.wear.2010.10.017
  8. 8. Garnham J. E., Davis C. L.: The role of deformed rail microstructure on rolling contact fatigue initiation. Wear 265 (2008), 1363-1372.
  9. 9. Peng D., Jones R., Constable T.: A study into crack growth in a railway wheel under thermal stop brake loading spectrum. Engineering Failure Analysis 25 (2012), 280-290.
  10. 10. Ahlström J., Karlsson B.: Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats. Wear 232 (1999), 1-14.
  11. 11. Ekberga A., Kabo E.: Fatigue of railway wheels and rails under rolling contact and thermal loading-an overview. Wear 258 (2005), 1288-1300.
  12. 12. Zerbst U., Madler K., Hintze H.: Fracture mechanics in railway applications--an overview. Engineering Fracture Mechanics 72 (2005), 163-194.
  13. 13. Fuoco R., Ferreira M.M., Azevedo C.R.F.: Failure analysis of a cast steel railway wheel. Engineering Failure Analysis 11 (2004), 817-828.
  14. 14. SHEN Xiao-hui at all: Austenite Grain Size Evolution in Railway Wheel During Multi-Stage Forging Processes. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL. 20(3) (2013), 57-65.10.1016/S1006-706X(13)60070-9
  15. 15. Miodrag A. at all: Analysis of the spreader track wheels premature damages. Engineering Failure Analysis 20 (2012), 118-136.10.1016/j.engfailanal.2011.11.005
  16. 16. Parida N., Das S.K., Tarafder S.: Failure analysis of railroad wheels. Engineering Failure Analysis 16 (2009), 1454-1460.
  17. 17. Ahlström J., Karlsson B.: Modelling of heat conduction and phase transformations during sliding of railway wheels. Wear 253 (2002), 291-300.
  18. 18. Donzella G. at all: Progressive damage assessment in the near-surface layer of railway wheel-rail couple under cyclic contact. Wear 271 (2011), 408-416.10.1016/j.wear.2010.10.042
  19. 19. Peng D., Jones R.: The development of combination mechanical contact and thermal braking loads for railway wheel fatigue analysis. Theoretical and Applied Fracture Mechanics 60 (2012), 10-14.
DOI: https://doi.org/10.1515/adms-2015-0018 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 5 - 13
Published on: Dec 30, 2015
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Z. Ławrynowicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.