Have a personal or library account? Click to login
Selective Laser Sintering – Binding Mechanism And Assistance In Medical Applications Cover

Selective Laser Sintering – Binding Mechanism And Assistance In Medical Applications

Open Access
|Oct 2015

References

  1. 1. Levy G.N., Schindel R., Kruth J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives, CIRP Annals (2003), 52(2): 589-609.10.1016/S0007-8506(07)60206-6
  2. 2. Miecielica M.: Analysis of selected methods for rapid prototyping, (in Polish), PW IIPiB (2007), Warsaw.
  3. 3. Ruszaj A.: Unconventional methods of fabrication machines and tools, (in Polish), IOS (1999), Krakow.
  4. 4. Kruth J.P., Leu M. C., Nakagawa T.:Progress in additive manufacturing and rapid prototyping, CIRP Annals(1998), 47(2): 525-540.10.1016/S0007-8506(07)63240-5
  5. 5. Gibson I., Rosen D. W., Stucker B.: Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer (2010), New York.10.1007/978-1-4419-1120-9
  6. 6. Cooper K.: Rapid prototyping technology – selection and application, Marcel Dekker (2001), New York.
  7. 7. Bourell D.L., Beaman J.J.: Materials issues in rapid prototyping, Proc. VRAP, Leiria (2005): 305-310.
  8. 8. Hudak R., Šarik M., Dadej R., Živčák J., Harachová D.: Material And Thermal Analysis Of Laser Sinterted Products, Acta Mechanica Et Automatica(2013), 7(1):115-19.10.2478/ama-2013-0003
  9. 9. Kumar S.: Selective Laser Sintering: A Qualitative and Objective Approach, JOM, Springer-Verlag (2003), 55(10): 43-47.10.1007/s11837-003-0175-y
  10. 10. Bourell D.L., Marcus H.L., Barlow J.W., Beaman J.J. (1992), Selective laser sintering of metals and ceramics, Int. J. Powder Metallurgy, 28 (4): 369-381.
  11. 11. Simchi A., Pohl H.:Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science & Engineering: A, Elsevier (2003), 359:119-128.10.1016/S0921-5093(03)00341-1
  12. 12. Fischer P., Romano V., Weber H.P., Karapatis N. P., Boillat E., Glardon R.: Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia (2003), 51:1651-1662.10.1016/S1359-6454(02)00567-0
  13. 13. Ghanekar A., Crawford R.: Optimization of SLS Process Parameters using D-Optimality, Douglas Watson National Instruments Inc, Austin, TX (1992): 348-362.
  14. 14. Kruth J.P., Wang X., Laoui T., Froyen L.: Lasers and materials in selective laser sintering, Assembly Automation (2003), 23(4): 357-371.10.1108/01445150310698652
  15. 15. Laoui T., Wang X., Childs T.H.C., Kruth J.P., Froyen L.: Laser penetration in a powder bed during selective laser sintering of metal powders: simulations versus experiments, Proc. SFF Symp., Austin (2000): 7-9.
  16. 16. Bagaria V., Rasalkar D., Bagaria S. J., Ilyas J.: Medical Applications of Rapid Prototyping – A New Horizon, Advanced Applications of Rapid Prototyping Technology in Modern Engineering, 1st ed., In Tech 2011:1-21.10.5772/20058
  17. 17. Kruth J.P., Levy G., Klocke F., Childs T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing, Annals of the CIRP (2010), 56(2): 730-75910.1016/j.cirp.2007.10.004
  18. 18. Das S.: Physical aspects of process control in selective laser sintering of metals, Advanced Engineering Materials (2003), 5: 701-711.10.1002/adem.200310099
  19. 19. Childs T.H.C., Hauser C., Badrossamay M.: Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling, Proc. IMechE part B, J. Engineering Manufacture (2005), 219: 339-357.10.1243/095440505X8109
  20. 20. Dimov S., Pham D.T., et al.: Rapid tooling applications of the selective laser sintering process, Assembly Automation (2001), 21(4): 296-302.10.1108/EUM0000000006011
  21. 21. Senthilkumaran K., Pandey P. M., Rao P. V. M.: Influence of building strategies on the accuracy of parts in selective laser sintering, Materials and Design (2009), 30: 2946-2954.10.1016/j.matdes.2009.01.009
  22. 22. Lu L., Fuh J. Y. H., Wong Y. S.: Laser-induced materials and processes for rapid prototyping, Springer Science & Business Media (2010): 89-142.
  23. 23. Wang X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, The Internation Journal of Advanced Manufacturing Technology (2002), 19: 351-357.10.1007/s001700200024
  24. 24. Kruth J.P., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M.: Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping J. (2005), 55(1): 26-36.10.1108/13552540510573365
  25. 25. Kruth J. P., Mercelis P., Froyen L., Rombouts M.: Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal (2005),11 (1): 26-36.10.1108/13552540510573365
  26. 26. Dobrzański L. A.: Introduction to Materials Science, (in Polish), Silesian University of Technology (2007), Gliwice.
  27. 27. Bednarczyk I., Lesz S., Puchała M., Szczucka – Lasota B., Warchoł A.: Nauka o materiałach i mechanika, Wyższa Szkoła Zarządzania Ochroną Pracy (2010), Katowice.
  28. 28. Szucki T.: Inżynieria Materiałowa: materiałoznawstwo, Oficyna Wydawnicza Politechniki Warszawskiej(1999), Warszawa.
  29. 29. Storch S., Nellessen D., Schaefer G., Reiter R.:Selective laser sintering: qualifying analysis of metal based powder systems for automotive applications, Rapid Prototyping Journal (2003), 9: 240-252.10.1108/13552540310489622
  30. 30. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B.: Selective laser melting of iron based powder, J. Materials Processing Technology(2004), 149(1-3): 616 – 622.10.1016/j.jmatprotec.2003.11.051
  31. 31. German R.M.:Sintering Theory and Practice, John Wiley and Sons (1996), New York.
  32. 32. Gibson I., Cheung L.K.., Chow S.P., Cheung W.L., Beh S.L., Savalani M., Lee S.H.: The use of rapid prototyping to assist medical applications, Rapid Prototyping Journal (2006), 12(1): 53 – 58.10.1108/13552540610637273
  33. 33. Kruth J.P., Van der Scheuren B., Bonse J.E., Morren B.:Basic powder metallurgical aspects in selective metal powder sintering, CIRP Annals (1996), 45(1): 183-186.10.1016/S0007-8506(07)63043-1
  34. 34. Gusarov A.V.: Mechanisms of selective laser sintering and heat transfert in Ti powder, Rapid Prototyping J. (2003), 9(5): 314-326.10.1108/13552540310502211
  35. 35. Gibson I., Shi D.: Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyping Journal (1997), 3(4):129-136.10.1108/13552549710191836
  36. 36. Kruth J.P., Vandenbroucke B., Van Vaerenbergh J., Naert I.: Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM, Proc. VRAP, Leiria(2005): 139-146.
  37. 37. Vail N.K., Swain D., Fox W.C., Aufdemorte T.B., Lee G., Barlow J.W.: Materials for biomedical applications, Proc. SFF Symp., Austin (1998): 621-628.
  38. 38. Williams J. D., Deckard C. R. (1998), Advances in modelling the effects of selected parameters on the SLS process, Rapid Prototyping Journal, 4(2): 90-100.10.1108/13552549810210257
  39. 39. Smith M.: A Preliminary experience with medical applications of rapid prototyping by selective laser sintering, Med. End. Phys. (1996), 19: 90-96.10.1016/S1350-4533(96)00039-2
  40. 40. Dalgarno K.W., Wood D.J., et al.: Mechanical properties and biological responses of bioactive glass ceramic processed using indirect SLS, Proc. SFF Symp., Austin (2005):132-140.
  41. 41. Miecielica M.: Rapid prototyping – methods and applicability in biomedical engineering, (in Polish) AGH (2009), Krakow.
  42. 42. Mazzoli A.: Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput (2013): 245-256.10.1007/s11517-012-1001-x
  43. 43. Tan K. H., Chua C. K., Leong K. F., Cheah C. M., Cheang P., Abu Bakar M. S., Cha S. W.: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomoposite blends, Biomaterials (2013), 24: 3115-3123.10.1016/S0142-9612(03)00131-5
  44. 44. Antonov E.N., Bagratashvili V.N., et al.: Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering, Advanced Materials (2005), 17(3): 327-333.10.1002/adma.200400838185544417464361
  45. 45. Chua C.K., Leong K.F., Tan K.H., Wiria F.E., Cheah C. M.: Development of tissue scaffolds using selective laser sintering of polyvinylalcohol/hydroxyapatite biocomposite for craniofacial and joint defects, J. Materials Science: Materials in Medicine (2004), 15(10): 1113-1121.10.1023/B:JMSM.0000046393.81449.a5
  46. 46. Cruz F., Simoes J., Coole T., Bocking C.: Direct manufacture of hydroxyapatite based bone implants by selective laser sintering, Proc. VRAP, Leiria(2005), 119-126.
  47. 47. Abe F., Osakada K., Kitamura Y., Matsumoto M., Shiomi M.: Manufacturing of titanium parts for medical purposes by selective laser melting, Proc. Rapid Prototyping (2000): 288-293.
  48. 48. Torres K., Staśkiewicz G., Śnieżyński M., Drop A., Maciejewski R.: Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education, Folia Morphol, Via Medica (2010), 70: 1-4.
  49. 49. Wu W.Z., Yan M.G.: Development of polymer coated metallic powder for selective laser sintering (SLS) process, J. Adv. Materials (2002), 34(2): 25-28.
  50. 50. Cruz F., Coole T., Bocking C., Simoes J.: Selective laser sintering of customized medical implants using biocomposite materials, Tech. Vjesn. (2003), 10(2): 23-27.
DOI: https://doi.org/10.1515/adms-2015-0011 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 5 - 16
Published on: Oct 14, 2015
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Ż. A. Mierzejewska, W. Markowicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.