Have a personal or library account? Click to login
Different pathways involved in the stimulatory effects of homocysteine on rat duodenal smooth muscle Cover

Different pathways involved in the stimulatory effects of homocysteine on rat duodenal smooth muscle

Open Access
|Jun 2017

References

  1. 1. Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26(3):219-225.10.1055/s-2000-846611011839
  2. 2. Han L, Wu Q, Wang C, et al. Homocysteine, ischemic stroke, and coronary heart disease in hypertensive patients: A population-based, prospective cohort study. Stroke. 2015;46(7):1777-1786.10.1161/STROKEAHA.115.00911126038522
  3. 3. Chao MC, Hu SL, Hsu HS, et al. Serum homocysteine level is positively associated with chronic kidney disease in a Taiwan Chinese population. J Nephrol. 2014;27(3):299-305.10.1007/s40620-013-0037-924430766
  4. 4. Erzin Y, Uzun H, Celik AF, Aydin S, Dirican A, Uzunismail H. Hyperhomocysteinemia in inflammatory bowel disease patients without past intestinal resections: correlations with cobalamin, pyridoxine, folate concentrations, acute phase reactants, disease activity, and prior thromboembolic complications. J Clin Gastroenterol. 2008;42(5):481-486.10.1097/MCG.0b013e318046eab018344891
  5. 5. Oussalah A, Guéant JL, Peyrin-Biroulet L. Meta-analysis: hyperhomocysteinaemia in inflammatory bowel diseases. Aliment Pharmacol Ther. 2011;34(10):1173-1184.10.1111/j.1365-2036.2011.04864.x21967576
  6. 6. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390-407.10.1038/ncpgasthep052816819502
  7. 7. Jiang Y, Zhao J, Xu CL, et al. The relationship of methylenetetrahydrofolate reductase G1793A gene polymorphism, hyperhomocysteinaemia and ulcerative colitis. Zhonghua Nei Ke Za Zhi. 2010;49(8):675-679.
  8. 8. Morgenstern I, Raijmakers MT, Peters WH, Hoensch H, Kirch W. Homocysteine, cysteine, and glutathione in human colonic mucosa: elevated levels of homocysteine in patients with inflammatory bowel disease. Dig Dis Sci. 2003;48(10):2083-2090.10.1023/A:1026338812708
  9. 9. Danese S, Semeraro S, Papa A, et al. Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol. 2005;11(46):7227-7236.10.3748/wjg.v11.i46.7227472514216437620
  10. 10. Akbulut S, Altiparmak E, Topal F, Ozaslan E, Kucukazman M, Yonem O. Increased levels of homocysteine in patients with ulcerative colitis. World J Gastroenterol. 2010;16(19):2411-2416.10.3748/wjg.v16.i19.2411287414720480528
  11. 11. Casella G, Bassotti G, Villanacci V, et al. Is hyperhomocysteinemia relevant in patients with celiac disease? World J Gastroenterol. 2011;17(24):2941-2944.10.3748/wjg.v17.i24.2941312950821734805
  12. 12. Miller JW, Beresford SA, Neuhouser ML, et al. Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am J Clin Nutr. 2013;97(4):827-834.10.3945/ajcn.112.049932
  13. 13. Peyrin-Biroulet L, Guéant-Rodriguez RM, Chen M, Bronowicki JP, Bigard MA, Guéant JL. Association of MTRR 66A>G polymorphism with superoxide dismutase and disease activity in patients with Crohn’s disease. Am J Gastroenterol. 2008;103(2):399-406.10.1111/j.1572-0241.2007.01573.x
  14. 14. Phelip JM, Ducros V, Faucheron JL, Flourie B, Roblin X. Association of hyperhomocysteinemia and folate deficiency with colon tumors in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(2):242-248.10.1002/ibd.20309
  15. 15. Givvimani S, Munjal C, Narayanan N, et al. Hyperhomocysteinemia decreases intestinal motility leading to constipation. Am J Physiol Gastrointest Liver Physiol. 2012;303(3):281-290.10.1152/ajpgi.00423.2011
  16. 16. Sturtzel B, Dietrich A, Wagner KH, Gisinger C, Elmadfa I. The status of vitamins B6, B12, folate, and of homocysteine in geriatric home residents receiving laxatives or dietary fiber. J Nutr Health Aging. 2010;14(3):219-223.10.1007/s12603-010-0053-6
  17. 17. Stojanović M, Šćepanović L, Hrnčić D, Rašić-Marković A, Djuric D, Stanojlović O. Multidisciplinary approach to nitric oxide signaling: Focus on the gastrointestinal and the central nervous system. Vojnosanit Pregl. 2015;72(7):619-624.10.2298/VSP131025051S
  18. 18. Gally JA, Montague PR, Reeke GN Jr, Edelman GM. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A. 1990;87(9):3547-3551.10.1073/pnas.87.9.3547
  19. 19. Nichols K, Krantis A, Staines W. Histochemical localization of nitric oxide-synthesizing neurons and vascular sites in the guinea-pig intestine. Neuroscience. 1992;51(4):791-799.10.1016/0306-4522(92)90520-C
  20. 20. Nichols K, Staines W, Krantis A. Nitric oxide synthase distribution in the rat intestine: a histochemical analysis. Gastroenterology. 1993;105(6):1651-1661.10.1016/0016-5085(93)91060-U
  21. 21. Nichols K, Staines W, Wu JY, Krantis A. Immunopositive GABAergic neural sites display nitric oxide synthase-related NADPH diaphorase activity in the human colon. J Auton Nerv Syst. 1995;50(3):253-262.10.1016/0165-1838(94)00096-3
  22. 22. Boeckxstaens GE, Pelckmans PA, Bogers JJ, et al. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther. 1991;256(2):441-447.
  23. 23. Calignano A, Whittle BJ, Di Rosa M, Moncada S. Involvement of endogenous nitric oxide in the regulation of rat intestinal motility in vivo. Eur J Pharmacol. 1992;229(2-3):273-276.10.1016/0014-2999(92)90567-N
  24. 24. D’Amato M, Currò D, Montuschi P. Evidence for dual components in the non-adrenergic non-cholinergic relaxation in the rat gastric fundus: role of endogenous nitric oxide and vasoactive intestinal polypeptide. J Auton Nerv Syst. 1992;37(3):175-186.10.1016/0165-1838(92)90039-J
  25. 25. Koh SD, Sanders KM. Stretch-dependent potassium channels in murine colonic smooth muscle cells. J Physiol. 2001;533(1):155-163.10.1111/j.1469-7793.2001.0155b.x
  26. 26. Park KJ, Baker SA, Cho SY, Sanders KM, Koh SD. Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol. 2005;144(8):1126-1137.10.1038/sj.bjp.0706154
  27. 27. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70(5):257-265.10.1111/j.1753-4887.2012.00476.x
  28. 28. Peyrin-Biroulet L, Rodriguez-Guéant RM, Chamaillard M, et al. Vascular and cellular stress in inflammatory bowel disease: revisiting the role of homocysteine. Am J Gastroenterol. 2007;102(5):1108-1115.10.1111/j.1572-0241.2007.01170.x
  29. 29. McKenzie SJ, Baker MS, Buffinton GD, Doe WF. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Invest. 1996;98(1):136-141.10.1172/JCI118757
  30. 30. Middleton SJ, Shorthouse M, Hunter JO. Increased nitric oxide synthesis in ulcerative colitis. Lancet. 1993;341(8843):465-466.10.1016/0140-6736(93)90211-X
  31. 31. Forster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg. 2005;9(1):102-108.10.1016/j.gassur.2004.10.001
  32. 32. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358.10.1016/0003-2697(79)90738-3
  33. 33. Johnstone C, Day JG, Staines H, Benson EE: The development of a 2,2’-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) radical cation decolourisation assay for evaluating total antioxidant status in an alga used to monitor environmental impacts in urban aquatic habitans. Ecol Indic. 2006;6:280-289.10.1016/j.ecolind.2005.03.003
  34. 34. Aebi H: Catalase in vitro. Methods Enzymol. 1984;105:121-126.10.1016/S0076-6879(84)05016-3
  35. 35. Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem. 1978;90(1):81-89.10.1016/0003-2697(78)90010-6
  36. 36. Günzler WA, Kremers H, Flohé L. An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood. Z Klin Chem Klin Biochem. 1974;12(10):444-448.
  37. 37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.10.1016/S0021-9258(19)52451-6
  38. 38. Fang Z, Yao K, Zhang X, et al. Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids. 2010;39(3):633-640.10.1007/s00726-010-0502-x
  39. 39. Karasu E, Sadan G, Tasatargil A. Effects of hyperhomocysteinemia on non-adrenergic non-cholinergic relaxation in isolated rat duodenum. Dig Dis Sci. 2008;53(8):2106-2112.10.1007/s10620-008-0318-7
  40. 40. Stojanović M, Šćepanović LJ, Mitrović D, et al. Rat duodenal motility in vitro: procinetic effects of D,L-Homocysteine thiolactone and modulation of nitric oxide mediated inhibition. Arch Biol Sci. 2013;65(4):1323−1330.10.2298/ABS1304323S
  41. 41. Choe EK, Moon JS, Park KJ. Methionine enhances the contractile activity of human colon circular smooth muscle in vitro. J Korean Med Sci. 2012;27(7):777-783.10.3346/jkms.2012.27.7.777
  42. 42. Fu WY, Dudman NP, Perry MA, Wang XL. Homocysteine attenuates hemodynamic responses to nitric oxide in vivo. Atherosclerosis. 2002;161(1):169-176.10.1016/S0021-9150(01)00654-2
  43. 43. Zhang LB, Horowitz B, Buxton IL. Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol Pharmacol. 1991;40(6):943-951.
  44. 44. Thomas EA, Baker SA, Ehlert FJ. Functional role for the M2 muscarinic receptor in smooth muscle of guinea pig ileum. Mol Pharmacol. 1993;44(1):102-110.
  45. 45. Glasgow I, Mattar K, Krantis A. Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Am J Physiol. 1998;275(1):889-896.10.1152/ajpgi.1998.275.5.G8899815016
  46. 46. Sanders KM, Ward SM. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol. 1992;262(3):379-392.
  47. 47. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol. 2003;38(5):421-430.10.1007/s00535-003-1094-y12768383
  48. 48. Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990;101(3):746-752.10.1111/j.1476-5381.1990.tb14151.x19177531706208
  49. 49. Smith TK, Spencer NJ, Hennig GW, Dickson EJ. Recent advances in enteric neurobiology: mechanosensitive interneurons. Neurogastroenterol Motil. 2007;19(11):869-878.10.1111/j.1365-2982.2007.01019.x17988274
  50. 50. Dickson EJ1, Spencer NJ, Hennig GW, et al. An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology. 2007;132(5):1912-1924.10.1053/j.gastro.2007.02.04717484884
  51. 51. Spencer NJ, Smith TK. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol. 2004;558(2):577-596.10.1113/jphysiol.2004.063586166496315146052
  52. 52. Lundgren O, Svanvik J, Jivegård L. Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci. 1989;34(2):264-283.10.1007/BF015360622644111
  53. 53. Hwang SJ, Durnin L, Dwyer L, et al. β-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology. 2011;140(2):608-617.10.1053/j.gastro.2010.09.039303173820875415
  54. 54. Keef KD, Anderson U, O’Driscoll K, Ward SM, Sanders KM. Electrical activity induced by nitric oxide in canine colonic circular muscle. Am J Physiol Gastrointest Liver Physiol. 2002;282(1):123-129.10.1152/ajpgi.00217.200111751165
  55. 55. Won KJ, Sanders KM, Ward SM. Stretch-dependent sensitization of post-junctional neural effectors in colonic muscles. Neurogastroenterol Motil. 2013;25(2):101-113.10.1111/nmo.12059355210623279087
  56. 56. Woo CW, Prathapasinghe GA, Siow YL. Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim Biophys Acta. 2006;1762(7):656-665.10.1016/j.bbadis.2006.05.01216837172
  57. 57. Chanson A, Rock E, Martin JF, Liotard A, Brachet P. Preferential response of glutathionerelated enzymes to folate-dependent changes in the redox state of rat liver. Eur J Nutr. 2007;46(4):204-212.10.1007/s00394-007-0651-117464446
  58. 58. Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol. 2004;10(12):1699-1708.10.3748/wjg.v10.i12.1699457225315188490
  59. 59. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA. Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys. 2001;388(2):261-266.10.1006/abbi.2001.229211368163
DOI: https://doi.org/10.1515/acve-2017-0021 | Journal eISSN: 1820-7448 | Journal ISSN: 0567-8315
Language: English
Page range: 254 - 270
Submitted on: Jul 21, 2016
Accepted on: Feb 3, 2017
Published on: Jun 26, 2017
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2017 Marija Stojanović, Ljiljana Šćepanović, Dušan Mitrović, Vuk Šćepanović, Radomir Šćepanović, Marko Djuric, Slobodan Ilić, Teja Šćepanović, Dragan Djuric, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.