Have a personal or library account? Click to login
Effects Of Dietary Supplementation With A Mixture Of Buckwheat Leaf And Flower On Fatty Acid Composition Of Rat Brain Phospholipids Cover

Effects Of Dietary Supplementation With A Mixture Of Buckwheat Leaf And Flower On Fatty Acid Composition Of Rat Brain Phospholipids

Open Access
|Sep 2015

References

  1. 1. Martinez M1, Mougan I. Fatty acid composition of human brain phospholipids during normal development. J Neurochem. 1998, 1:2528-33.10.1046/j.1471-4159.1998.71062528.x
  2. 2. Tayebati SK, Amenta F. Choline-containing phospholipids: Relevance to brain functional pathways. Clin Chem Lab Med. 2013, 51:513-51.10.1515/cclm-2012-0559
  3. 3. Carrie I, Clement M, de Javel D, Frances H, Bourre JM. Specific phospholipid fatty acid composition of brain regions in mice: Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res. 2000, 41:465-72.10.1016/S0022-2275(20)34485-0
  4. 4. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003, 48:195-203.10.1177/070674370304800308
  5. 5. Liu Z, Ishikawa W, Huang X, et al. A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr. 2001, 131:1850-53.10.1093/jn/131.6.1850
  6. 6. Valenzuela A, Sanhueza J, Alonso P, Corbari A. Inhibitory action of conventional food-grade natural antioxidants and of natural antioxidants of new development on the thermal-induced oxidation of cholesterol. Int J Food Sci Nutr. 2004, 55:155-62.10.1080/09637480410001666496
  7. 7. Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem. 2003, 51:7287-91.10.1021/jf0302153
  8. 8. Suzuki R, Rylander-Rudqvist T, Ye W, Saji S, Adlercreutz H, Wolk A. Dietary fiber intake and risk of postmenopausal breast cancer defined by estrogen and progesterone receptor status - a prospective cohort study among Swedish women. Int J Cancer. 2008, 122:403-12.10.1002/ijc.23060
  9. 9. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. Buckwheat - the source of antioxidant activity in functional foods. Food Res Int. 2002, 35:207-11.10.1016/S0963-9969(01)00185-5
  10. 10. Đurendic–Brenesel M, Popovic T, Pilija V, et al. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats. Bosn J Basic Med Sci. 2013, 13:100-8.10.17305/bjbms.2013.2389433392923725506
  11. 11. Mišan A, Đurendić-Brenesel M, Milovanović I, et al. Effectiveness of Fagopyri herba feed supplementation in normal and high-fat fed rats. In XV International Feed Technology Symposium Feed-to Food/Cost Feed for Health Joint Workshop. 2012.
  12. 12. Landen M, Davidsson P, Gottfries CG, Mansson JE, Blennow K. Reduction of the synaptophysin level but normal levels of glycerophospholipids in the gyrus cinguli in schizophrenia. Schizophr Res. 2002, 55:83-8.10.1016/S0920-9964(01)00197-9
  13. 13. Cristopherson SW, Glass RL. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J Dairy Sci. 1969, 52:1289-90.10.3168/jds.S0022-0302(69)86739-1
  14. 14. Samra RA, Fats and Satietz. In: Montmayeur JP, le Coutre J (ed) Fat Detection: Taste, texture, and Post Ingestive Effects, Boca Raton (FL): CRC Press 2010.10.1201/9781420067767-c15
  15. 15. Vento PJ, Swartz ME, Martin LBE, Daniels D. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets. J Am Assoc Lab Anim Sci. 2008, 47:46-50.
  16. 16. Tamashiro KLK, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009, 58:1116-1125.10.2337/db08-1129267105719188431
  17. 17. Chajes V, Joulin V, Clavel-Chapelon F. The fatty acid desaturation index of blood lipids, as biomarker of hepatic stearoyl-CoA desaturase expression, is predictive factor of breast cancer risk. Curr Opin Lipidol. 2011,22:6-10.10.1097/MOL.0b013e328340455220935562
  18. 18. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009, 8:37.10.1186/1476-511X-8-37274620819712485
  19. 19. Guillou H, Zadravec D, Martin P, Jocobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lip Res. 2010, 19:186-99.10.1016/j.plipres.2009.12.00220018209
  20. 20. Brown JM, Rudel LL. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr Opin Lipidol. 2010, 21:192-7.10.1097/MOL.0b013e32833854ac309952720216310
  21. 21. Liu X, Strable MS, Ntambi JM. Stearoyl CoA Desaturase 1: Role in cellular inflammation and stress. Adv Nutr. 2011,2:15–22.10.3945/an.110.000125304278722211186
  22. 22. Vessby B, Gustafsson IB, Tengblad S, Berglund L. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat. Br J Nutr. 2013, 10:871-9.10.1017/S000711451200593423414551
  23. 23. Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res. 2013, 52:15-42.10.1016/j.plipres.2012.08.002
  24. 24. Hanski E, Rimon G, Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979, 18:846–53.10.1021/bi00572a017
  25. 25. Djoussé L, Matthan NR, Lichtenstein AH, Gaziano JM. Red blood cell membrane concentration of cis-palmitoleic and cis-vaccenic acids and risk of coronary heart disease. Am J Cardiol. 2012, 110:539-44.10.1016/j.amjcard.2012.04.027
  26. 26. Heller A1, Won L, Bubula N, et al. Long-chain fatty acids increase cellular dopamine in an immortalized cell line (MN9D) derived from mouse mesencephalon. Neurosci Lett. 2005, 376:35-9.10.1016/j.neulet.2004.11.021
  27. 27. Venalainen T, Schwab U, Agren J, et al. Cross-sectional associations of food consumption with plasma fatty acid composition and estimated desaturase activities in Finnish children Lipids. 2014, 49:467-79.10.1007/s11745-014-3894-7
  28. 28. Bourre JM, Dumont O. Dietary oleic acid not used during brain development and in adult in rat, in contrast with sciatic nerve. Neurosci Lett. 2003, 336:180-84.10.1016/S0304-3940(02)01272-7
  29. 29. Oishi K, Zheng B, Kuo JF. Inhibition of Na, K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem. 1990, 265:70-5.9(I10.1016/S0021-9258(19)40196-8
  30. 30. Natali F, Siculella L, Salvati S, Gnoni G V. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res. 2007, 48:1966-75.10.1194/jlr.M700051-JLR200
  31. 31. Sztriha L, Betz AL, Oleic acid reversibly opens the blood-brain barrier. Brain Res. 1991, 550:257-62.10.1016/0006-8993(91)91326-V
  32. 32. Lee JS, Bok SH, Jeon SM, et al. Antihyperlipidemic effects of buckwheat leaf and flower in rats fed a high-fat diet. Food chem. 2010, 119:235-40.10.1016/j.foodchem.2009.06.014
  33. 33. Weisinger HS, Vingrys AJ, Sinclair AJ. Dietary manipulation of long-chain polyunsaturated fatty acids in the retina and brain of guinea pigs. Lipids. 1995, 30:471-3.10.1007/BF025363077637569
  34. 34. Ikeda I, Mitsui K, Imaizumi K. Effect of dietary linoleic, alpha-linolenic and arachidonic acids on lipid metabolism, tissue fatty acid composition and eicosanoid production in rats. J Nutr Sci Vitaminol. 1996, 42:541-51.10.3177/jnsv.42.5419089480
  35. 35. MacDonald RS, Zhang W, Zhang JP, Sun GY. Brain neutral lipids and phospholipids are modified by long- term feeding of beef tallow vs. corn oil diets. J Nutr. 1996,126:1554-62.10.1093/jn/126.6.15548648428
  36. 36. Lui Y, Longmore RB. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain and liver. Lipids. 1997, 32:965-9.10.1007/s11745-997-0125-x9307938
  37. 37. Fernstrom JD. Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids. 1999, 34:161-9.10.1007/s11745-999-0350-310102242
  38. 38. Lamptey MS, Walker BL. A possible dietary role for linolenic acid in the development of the young rat. J Nutr. 1976, 106:86-93.10.1093/jn/106.1.86942747
  39. 39. Mateos HT, Lewandowski PA, Su XQ, Effects of dietary fish oil replacement with flaxseed oil on tissue fatty acid composition and expression of desaturase and elongase genes. J Sci Food Agric. 2012, 92:418-26. HT, Lewandowski PA, Su XQ10.1002/jsfa.459421834099
  40. 40. Ramsden CE, Ringel A, Feldstein AE, et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids. 2012, 87:135-41.10.1016/j.plefa.2012.08.004346731922959954
  41. 41. DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI. Alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. Journal Neuroch. 2005, 94:1063–76.10.1111/j.1471-4159.2005.03258.x16092947
  42. 42. Igarashi M, DeMar JC, Ma K, Chang L, Bell JM, Rapoport SI. Docosahexaenoic acid synthesis from a-linolenic acid by rat brain is unaffected by dietary n-3 deprivation. J Lipid Res. 2007, 48:1150–8.10.1194/jlr.M600549-JLR20017277380
  43. 43. Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009, 77:937–46.10.1016/j.bcp.2008.10.02019022225
  44. 44. Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev. 2006, 58:591-620.10.1124/pr.58.3.716968951
  45. 45. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009, 28:525-42.10.1080/07315724.2009.1071978520439549
  46. 46. Igarashi M, DeMar JC Jr. Ma K, Chang L, Bell JM, Rapoport SI. Upregulated liver conversion of {alpha}-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res. 2007, 8:152-64.10.1194/jlr.M600396-JLR20017050905
  47. 47. Petersson H, Basu S, Cederholm T, Risérus U. Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: longitudinal analyses in middle-aged men. Br J Nutr. 2008, 99:1186-89.10.1017/S000711450787167418062827
  48. 48. Brown JE, Kelly MF. Influence of dietary cholesterol and stress on the metabolism of linoleic acid: Δ6-desaturase activity vs. product/precursor ratios. Int J Food Safety. 2008, 1:5-15.10.1504/IJFSNPH.2008.018852
  49. 49. Simopoulos AP. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011, 44:203-15.10.1007/s12035-010-8162-021279554
DOI: https://doi.org/10.1515/acve-2015-0032 | Journal eISSN: 1820-7448 | Journal ISSN: 0567-8315
Language: English
Page range: 390 - 403
Submitted on: Dec 17, 2014
Accepted on: Apr 30, 2015
Published on: Sep 30, 2015
Published by: University of Belgrade, Faculty of Veterinary Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2015 Petrović Snježana, Arsić Aleksandra, Debeljak-Martačić Jasmina, Đurendić-Brenesel Maja, Pilija Vladimir, Milić Nataša, Popović Tamara, published by University of Belgrade, Faculty of Veterinary Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.