References
- 1. Martinez M1, Mougan I. Fatty acid composition of human brain phospholipids during normal development. J Neurochem. 1998, 1:2528-33.10.1046/j.1471-4159.1998.71062528.x
- 2. Tayebati SK, Amenta F. Choline-containing phospholipids: Relevance to brain functional pathways. Clin Chem Lab Med. 2013, 51:513-51.10.1515/cclm-2012-0559
- 3. Carrie I, Clement M, de Javel D, Frances H, Bourre JM. Specific phospholipid fatty acid composition of brain regions in mice: Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res. 2000, 41:465-72.10.1016/S0022-2275(20)34485-0
- 4. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003, 48:195-203.10.1177/070674370304800308
- 5. Liu Z, Ishikawa W, Huang X, et al. A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr. 2001, 131:1850-53.10.1093/jn/131.6.1850
- 6. Valenzuela A, Sanhueza J, Alonso P, Corbari A. Inhibitory action of conventional food-grade natural antioxidants and of natural antioxidants of new development on the thermal-induced oxidation of cholesterol. Int J Food Sci Nutr. 2004, 55:155-62.10.1080/09637480410001666496
- 7. Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem. 2003, 51:7287-91.10.1021/jf0302153
- 8. Suzuki R, Rylander-Rudqvist T, Ye W, Saji S, Adlercreutz H, Wolk A. Dietary fiber intake and risk of postmenopausal breast cancer defined by estrogen and progesterone receptor status - a prospective cohort study among Swedish women. Int J Cancer. 2008, 122:403-12.10.1002/ijc.23060
- 9. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. Buckwheat - the source of antioxidant activity in functional foods. Food Res Int. 2002, 35:207-11.10.1016/S0963-9969(01)00185-5
- 10. Đurendic–Brenesel M, Popovic T, Pilija V, et al. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats. Bosn J Basic Med Sci. 2013, 13:100-8.10.17305/bjbms.2013.2389433392923725506
- 11. Mišan A, Đurendić-Brenesel M, Milovanović I, et al. Effectiveness of Fagopyri herba feed supplementation in normal and high-fat fed rats. In XV International Feed Technology Symposium Feed-to Food/Cost Feed for Health Joint Workshop. 2012.
- 12. Landen M, Davidsson P, Gottfries CG, Mansson JE, Blennow K. Reduction of the synaptophysin level but normal levels of glycerophospholipids in the gyrus cinguli in schizophrenia. Schizophr Res. 2002, 55:83-8.10.1016/S0920-9964(01)00197-9
- 13. Cristopherson SW, Glass RL. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J Dairy Sci. 1969, 52:1289-90.10.3168/jds.S0022-0302(69)86739-1
- 14. Samra RA, Fats and Satietz. In: Montmayeur JP, le Coutre J (ed) Fat Detection: Taste, texture, and Post Ingestive Effects, Boca Raton (FL): CRC Press 2010.10.1201/9781420067767-c15
- 15. Vento PJ, Swartz ME, Martin LBE, Daniels D. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets. J Am Assoc Lab Anim Sci. 2008, 47:46-50.
- 16. Tamashiro KLK, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009, 58:1116-1125.10.2337/db08-1129267105719188431
- 17. Chajes V, Joulin V, Clavel-Chapelon F. The fatty acid desaturation index of blood lipids, as biomarker of hepatic stearoyl-CoA desaturase expression, is predictive factor of breast cancer risk. Curr Opin Lipidol. 2011,22:6-10.10.1097/MOL.0b013e328340455220935562
- 18. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009, 8:37.10.1186/1476-511X-8-37274620819712485
- 19. Guillou H, Zadravec D, Martin P, Jocobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lip Res. 2010, 19:186-99.10.1016/j.plipres.2009.12.00220018209
- 20. Brown JM, Rudel LL. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr Opin Lipidol. 2010, 21:192-7.10.1097/MOL.0b013e32833854ac309952720216310
- 21. Liu X, Strable MS, Ntambi JM. Stearoyl CoA Desaturase 1: Role in cellular inflammation and stress. Adv Nutr. 2011,2:15–22.10.3945/an.110.000125304278722211186
- 22. Vessby B, Gustafsson IB, Tengblad S, Berglund L. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat. Br J Nutr. 2013, 10:871-9.10.1017/S000711451200593423414551
- 23. Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res. 2013, 52:15-42.10.1016/j.plipres.2012.08.002
- 24. Hanski E, Rimon G, Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979, 18:846–53.10.1021/bi00572a017
- 25. Djoussé L, Matthan NR, Lichtenstein AH, Gaziano JM. Red blood cell membrane concentration of cis-palmitoleic and cis-vaccenic acids and risk of coronary heart disease. Am J Cardiol. 2012, 110:539-44.10.1016/j.amjcard.2012.04.027
- 26. Heller A1, Won L, Bubula N, et al. Long-chain fatty acids increase cellular dopamine in an immortalized cell line (MN9D) derived from mouse mesencephalon. Neurosci Lett. 2005, 376:35-9.10.1016/j.neulet.2004.11.021
- 27. Venalainen T, Schwab U, Agren J, et al. Cross-sectional associations of food consumption with plasma fatty acid composition and estimated desaturase activities in Finnish children Lipids. 2014, 49:467-79.10.1007/s11745-014-3894-7
- 28. Bourre JM, Dumont O. Dietary oleic acid not used during brain development and in adult in rat, in contrast with sciatic nerve. Neurosci Lett. 2003, 336:180-84.10.1016/S0304-3940(02)01272-7
- 29. Oishi K, Zheng B, Kuo JF. Inhibition of Na, K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem. 1990, 265:70-5.9(I10.1016/S0021-9258(19)40196-8
- 30. Natali F, Siculella L, Salvati S, Gnoni G V. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res. 2007, 48:1966-75.10.1194/jlr.M700051-JLR200
- 31. Sztriha L, Betz AL, Oleic acid reversibly opens the blood-brain barrier. Brain Res. 1991, 550:257-62.10.1016/0006-8993(91)91326-V
- 32. Lee JS, Bok SH, Jeon SM, et al. Antihyperlipidemic effects of buckwheat leaf and flower in rats fed a high-fat diet. Food chem. 2010, 119:235-40.10.1016/j.foodchem.2009.06.014
- 33. Weisinger HS, Vingrys AJ, Sinclair AJ. Dietary manipulation of long-chain polyunsaturated fatty acids in the retina and brain of guinea pigs. Lipids. 1995, 30:471-3.10.1007/BF025363077637569
- 34. Ikeda I, Mitsui K, Imaizumi K. Effect of dietary linoleic, alpha-linolenic and arachidonic acids on lipid metabolism, tissue fatty acid composition and eicosanoid production in rats. J Nutr Sci Vitaminol. 1996, 42:541-51.10.3177/jnsv.42.5419089480
- 35. MacDonald RS, Zhang W, Zhang JP, Sun GY. Brain neutral lipids and phospholipids are modified by long- term feeding of beef tallow vs. corn oil diets. J Nutr. 1996,126:1554-62.10.1093/jn/126.6.15548648428
- 36. Lui Y, Longmore RB. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain and liver. Lipids. 1997, 32:965-9.10.1007/s11745-997-0125-x9307938
- 37. Fernstrom JD. Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids. 1999, 34:161-9.10.1007/s11745-999-0350-310102242
- 38. Lamptey MS, Walker BL. A possible dietary role for linolenic acid in the development of the young rat. J Nutr. 1976, 106:86-93.10.1093/jn/106.1.86942747
- 39. Mateos HT, Lewandowski PA, Su XQ, Effects of dietary fish oil replacement with flaxseed oil on tissue fatty acid composition and expression of desaturase and elongase genes. J Sci Food Agric. 2012, 92:418-26. HT, Lewandowski PA, Su XQ10.1002/jsfa.459421834099
- 40. Ramsden CE, Ringel A, Feldstein AE, et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids. 2012, 87:135-41.10.1016/j.plefa.2012.08.004346731922959954
- 41. DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI. Alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. Journal Neuroch. 2005, 94:1063–76.10.1111/j.1471-4159.2005.03258.x16092947
- 42. Igarashi M, DeMar JC, Ma K, Chang L, Bell JM, Rapoport SI. Docosahexaenoic acid synthesis from a-linolenic acid by rat brain is unaffected by dietary n-3 deprivation. J Lipid Res. 2007, 48:1150–8.10.1194/jlr.M600549-JLR20017277380
- 43. Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009, 77:937–46.10.1016/j.bcp.2008.10.02019022225
- 44. Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev. 2006, 58:591-620.10.1124/pr.58.3.716968951
- 45. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009, 28:525-42.10.1080/07315724.2009.1071978520439549
- 46. Igarashi M, DeMar JC Jr. Ma K, Chang L, Bell JM, Rapoport SI. Upregulated liver conversion of {alpha}-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res. 2007, 8:152-64.10.1194/jlr.M600396-JLR20017050905
- 47. Petersson H, Basu S, Cederholm T, Risérus U. Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: longitudinal analyses in middle-aged men. Br J Nutr. 2008, 99:1186-89.10.1017/S000711450787167418062827
- 48. Brown JE, Kelly MF. Influence of dietary cholesterol and stress on the metabolism of linoleic acid: Δ6-desaturase activity vs. product/precursor ratios. Int J Food Safety. 2008, 1:5-15.10.1504/IJFSNPH.2008.018852
- 49. Simopoulos AP. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011, 44:203-15.10.1007/s12035-010-8162-021279554