Have a personal or library account? Click to login
Effects Of Dietary Supplementation With A Mixture Of Buckwheat Leaf And Flower On Fatty Acid Composition Of Rat Brain Phospholipids Cover

Effects Of Dietary Supplementation With A Mixture Of Buckwheat Leaf And Flower On Fatty Acid Composition Of Rat Brain Phospholipids

Open Access
|Sep 2015

References

  1. 1. Martinez M1, Mougan I. Fatty acid composition of human brain phospholipids during normal development. J Neurochem. 1998, 1:2528-33.<a href="https://doi.org/10.1046/j.1471-4159.1998.71062528.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1046/j.1471-4159.1998.71062528.x</a>
  2. 2. Tayebati SK, Amenta F. Choline-containing phospholipids: Relevance to brain functional pathways. Clin Chem Lab Med. 2013, 51:513-51.<a href="https://doi.org/10.1515/cclm-2012-0559" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/cclm-2012-0559</a>
  3. 3. Carrie I, Clement M, de Javel D, Frances H, Bourre JM. Specific phospholipid fatty acid composition of brain regions in mice: Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res. 2000, 41:465-72.<a href="https://doi.org/10.1016/S0022-2275(20)34485-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0022-2275(20)34485-0</a>
  4. 4. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003, 48:195-203.<a href="https://doi.org/10.1177/070674370304800308" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/070674370304800308</a>
  5. 5. Liu Z, Ishikawa W, Huang X, et al. A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr. 2001, 131:1850-53.<a href="https://doi.org/10.1093/jn/131.6.1850" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jn/131.6.1850</a>
  6. 6. Valenzuela A, Sanhueza J, Alonso P, Corbari A. Inhibitory action of conventional food-grade natural antioxidants and of natural antioxidants of new development on the thermal-induced oxidation of cholesterol. Int J Food Sci Nutr. 2004, 55:155-62.<a href="https://doi.org/10.1080/09637480410001666496" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/09637480410001666496</a>
  7. 7. Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem. 2003, 51:7287-91.<a href="https://doi.org/10.1021/jf0302153" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/jf0302153</a>
  8. 8. Suzuki R, Rylander-Rudqvist T, Ye W, Saji S, Adlercreutz H, Wolk A. Dietary fiber intake and risk of postmenopausal breast cancer defined by estrogen and progesterone receptor status - a prospective cohort study among Swedish women. Int J Cancer. 2008, 122:403-12.<a href="https://doi.org/10.1002/ijc.23060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/ijc.23060</a>
  9. 9. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. Buckwheat - the source of antioxidant activity in functional foods. Food Res Int. 2002, 35:207-11.<a href="https://doi.org/10.1016/S0963-9969(01)00185-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0963-9969(01)00185-5</a>
  10. 10. Đurendic–Brenesel M, Popovic T, Pilija V, et al. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats. Bosn J Basic Med Sci. 2013, 13:100-8.<a href="https://doi.org/10.17305/bjbms.2013.2389433392923725506" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17305/bjbms.2013.2389433392923725506</a>
  11. 11. Mišan A, Đurendić-Brenesel M, Milovanović I, et al. Effectiveness of Fagopyri herba feed supplementation in normal and high-fat fed rats. In XV International Feed Technology Symposium Feed-to Food/Cost Feed for Health Joint Workshop. 2012.
  12. 12. Landen M, Davidsson P, Gottfries CG, Mansson JE, Blennow K. Reduction of the synaptophysin level but normal levels of glycerophospholipids in the gyrus cinguli in schizophrenia. Schizophr Res. 2002, 55:83-8.<a href="https://doi.org/10.1016/S0920-9964(01)00197-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0920-9964(01)00197-9</a>
  13. 13. Cristopherson SW, Glass RL. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J Dairy Sci. 1969, 52:1289-90.<a href="https://doi.org/10.3168/jds.S0022-0302(69)86739-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.S0022-0302(69)86739-1</a>
  14. 14. Samra RA, Fats and Satietz. In: Montmayeur JP, le Coutre J (ed) Fat Detection: Taste, texture, and Post Ingestive Effects, Boca Raton (FL): CRC Press 2010.<a href="https://doi.org/10.1201/9781420067767-c15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1201/9781420067767-c15</a>
  15. 15. Vento PJ, Swartz ME, Martin LBE, Daniels D. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets. J Am Assoc Lab Anim Sci. 2008, 47:46-50.
  16. 16. Tamashiro KLK, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009, 58:1116-1125.<a href="https://doi.org/10.2337/db08-1129267105719188431" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2337/db08-1129267105719188431</a>
  17. 17. Chajes V, Joulin V, Clavel-Chapelon F. The fatty acid desaturation index of blood lipids, as biomarker of hepatic stearoyl-CoA desaturase expression, is predictive factor of breast cancer risk. Curr Opin Lipidol. 2011,22:6-10.<a href="https://doi.org/10.1097/MOL.0b013e328340455220935562" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1097/MOL.0b013e328340455220935562</a>
  18. 18. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009, 8:37.<a href="https://doi.org/10.1186/1476-511X-8-37274620819712485" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/1476-511X-8-37274620819712485</a>
  19. 19. Guillou H, Zadravec D, Martin P, Jocobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lip Res. 2010, 19:186-99.<a href="https://doi.org/10.1016/j.plipres.2009.12.00220018209" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.plipres.2009.12.00220018209</a>
  20. 20. Brown JM, Rudel LL. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr Opin Lipidol. 2010, 21:192-7.<a href="https://doi.org/10.1097/MOL.0b013e32833854ac309952720216310" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1097/MOL.0b013e32833854ac309952720216310</a>
  21. 21. Liu X, Strable MS, Ntambi JM. Stearoyl CoA Desaturase 1: Role in cellular inflammation and stress. Adv Nutr. 2011,2:15–22.<a href="https://doi.org/10.3945/an.110.000125304278722211186" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3945/an.110.000125304278722211186</a>
  22. 22. Vessby B, Gustafsson IB, Tengblad S, Berglund L. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat. Br J Nutr. 2013, 10:871-9.<a href="https://doi.org/10.1017/S000711451200593423414551" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S000711451200593423414551</a>
  23. 23. Hodson L, Fielding BA. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res. 2013, 52:15-42.<a href="https://doi.org/10.1016/j.plipres.2012.08.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.plipres.2012.08.002</a>
  24. 24. Hanski E, Rimon G, Levitzki A. Adenylate cyclase activation by the beta-adrenergic receptors as a diffusion-controlled process. Biochemistry. 1979, 18:846–53.<a href="https://doi.org/10.1021/bi00572a017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/bi00572a017</a>
  25. 25. Djoussé L, Matthan NR, Lichtenstein AH, Gaziano JM. Red blood cell membrane concentration of cis-palmitoleic and cis-vaccenic acids and risk of coronary heart disease. Am J Cardiol. 2012, 110:539-44.<a href="https://doi.org/10.1016/j.amjcard.2012.04.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.amjcard.2012.04.027</a>
  26. 26. Heller A1, Won L, Bubula N, et al. Long-chain fatty acids increase cellular dopamine in an immortalized cell line (MN9D) derived from mouse mesencephalon. Neurosci Lett. 2005, 376:35-9.<a href="https://doi.org/10.1016/j.neulet.2004.11.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neulet.2004.11.021</a>
  27. 27. Venalainen T, Schwab U, Agren J, et al. Cross-sectional associations of food consumption with plasma fatty acid composition and estimated desaturase activities in Finnish children Lipids. 2014, 49:467-79.<a href="https://doi.org/10.1007/s11745-014-3894-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11745-014-3894-7</a>
  28. 28. Bourre JM, Dumont O. Dietary oleic acid not used during brain development and in adult in rat, in contrast with sciatic nerve. Neurosci Lett. 2003, 336:180-84.<a href="https://doi.org/10.1016/S0304-3940(02)01272-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0304-3940(02)01272-7</a>
  29. 29. Oishi K, Zheng B, Kuo JF. Inhibition of Na, K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem. 1990, 265:70-5.9(I10.1016/S0021-9258(19)40196-8
  30. 30. Natali F, Siculella L, Salvati S, Gnoni G V. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res. 2007, 48:1966-75.<a href="https://doi.org/10.1194/jlr.M700051-JLR200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1194/jlr.M700051-JLR200</a>
  31. 31. Sztriha L, Betz AL, Oleic acid reversibly opens the blood-brain barrier. Brain Res. 1991, 550:257-62.<a href="https://doi.org/10.1016/0006-8993(91)91326-V" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0006-8993(91)91326-V</a>
  32. 32. Lee JS, Bok SH, Jeon SM, et al. Antihyperlipidemic effects of buckwheat leaf and flower in rats fed a high-fat diet. Food chem. 2010, 119:235-40.<a href="https://doi.org/10.1016/j.foodchem.2009.06.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.foodchem.2009.06.014</a>
  33. 33. Weisinger HS, Vingrys AJ, Sinclair AJ. Dietary manipulation of long-chain polyunsaturated fatty acids in the retina and brain of guinea pigs. Lipids. 1995, 30:471-3.<a href="https://doi.org/10.1007/BF025363077637569" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF025363077637569</a>
  34. 34. Ikeda I, Mitsui K, Imaizumi K. Effect of dietary linoleic, alpha-linolenic and arachidonic acids on lipid metabolism, tissue fatty acid composition and eicosanoid production in rats. J Nutr Sci Vitaminol. 1996, 42:541-51.<a href="https://doi.org/10.3177/jnsv.42.5419089480" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3177/jnsv.42.5419089480</a>
  35. 35. MacDonald RS, Zhang W, Zhang JP, Sun GY. Brain neutral lipids and phospholipids are modified by long- term feeding of beef tallow vs. corn oil diets. J Nutr. 1996,126:1554-62.<a href="https://doi.org/10.1093/jn/126.6.15548648428" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jn/126.6.15548648428</a>
  36. 36. Lui Y, Longmore RB. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain and liver. Lipids. 1997, 32:965-9.<a href="https://doi.org/10.1007/s11745-997-0125-x9307938" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11745-997-0125-x9307938</a>
  37. 37. Fernstrom JD. Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids. 1999, 34:161-9.<a href="https://doi.org/10.1007/s11745-999-0350-310102242" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11745-999-0350-310102242</a>
  38. 38. Lamptey MS, Walker BL. A possible dietary role for linolenic acid in the development of the young rat. J Nutr. 1976, 106:86-93.<a href="https://doi.org/10.1093/jn/106.1.86942747" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jn/106.1.86942747</a>
  39. 39. Mateos HT, Lewandowski PA, Su XQ, Effects of dietary fish oil replacement with flaxseed oil on tissue fatty acid composition and expression of desaturase and elongase genes. J Sci Food Agric. 2012, 92:418-26. HT, Lewandowski PA, Su XQ10.1002/jsfa.459421834099
  40. 40. Ramsden CE, Ringel A, Feldstein AE, et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids. 2012, 87:135-41.<a href="https://doi.org/10.1016/j.plefa.2012.08.004346731922959954" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.plefa.2012.08.004346731922959954</a>
  41. 41. DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI. Alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. Journal Neuroch. 2005, 94:1063–76.<a href="https://doi.org/10.1111/j.1471-4159.2005.03258.x16092947" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1471-4159.2005.03258.x16092947</a>
  42. 42. Igarashi M, DeMar JC, Ma K, Chang L, Bell JM, Rapoport SI. Docosahexaenoic acid synthesis from a-linolenic acid by rat brain is unaffected by dietary n-3 deprivation. J Lipid Res. 2007, 48:1150–8.<a href="https://doi.org/10.1194/jlr.M600549-JLR20017277380" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1194/jlr.M600549-JLR20017277380</a>
  43. 43. Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009, 77:937–46.<a href="https://doi.org/10.1016/j.bcp.2008.10.02019022225" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bcp.2008.10.02019022225</a>
  44. 44. Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev. 2006, 58:591-620.<a href="https://doi.org/10.1124/pr.58.3.716968951" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1124/pr.58.3.716968951</a>
  45. 45. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009, 28:525-42.<a href="https://doi.org/10.1080/07315724.2009.1071978520439549" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07315724.2009.1071978520439549</a>
  46. 46. Igarashi M, DeMar JC Jr. Ma K, Chang L, Bell JM, Rapoport SI. Upregulated liver conversion of {alpha}-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res. 2007, 8:152-64.<a href="https://doi.org/10.1194/jlr.M600396-JLR20017050905" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1194/jlr.M600396-JLR20017050905</a>
  47. 47. Petersson H, Basu S, Cederholm T, Risérus U. Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: longitudinal analyses in middle-aged men. Br J Nutr. 2008, 99:1186-89.<a href="https://doi.org/10.1017/S000711450787167418062827" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S000711450787167418062827</a>
  48. 48. Brown JE, Kelly MF. Influence of dietary cholesterol and stress on the metabolism of linoleic acid: Δ6-desaturase activity vs. product/precursor ratios. Int J Food Safety. 2008, 1:5-15.<a href="https://doi.org/10.1504/IJFSNPH.2008.018852" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJFSNPH.2008.018852</a>
  49. 49. Simopoulos AP. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011, 44:203-15.<a href="https://doi.org/10.1007/s12035-010-8162-021279554" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12035-010-8162-021279554</a>
DOI: https://doi.org/10.1515/acve-2015-0032 | Journal eISSN: 1820-7448 | Journal ISSN: 0567-8315
Language: English
Page range: 390 - 403
Submitted on: Dec 17, 2014
Accepted on: Apr 30, 2015
Published on: Sep 30, 2015
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2015 Petrović Snježana, Arsić Aleksandra, Debeljak-Martačić Jasmina, Đurendić-Brenesel Maja, Pilija Vladimir, Milić Nataša, Popović Tamara, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.