Have a personal or library account? Click to login
Machine Learning Methods for Identifying Composition of Uranium Deposits in Kazakhstan Cover

Machine Learning Methods for Identifying Composition of Uranium Deposits in Kazakhstan

Open Access
|Dec 2017

References

  1. [1] ZAO NAK “Kazatomprom,” TOO IVT. Metodičeskie rekomendacii po kompleksu geofizičeskih metodov issledovanija skvažin pri podzemnom vyŝelačivanii urana. Almaty, 2003.
  2. [2] “World Uranium Mining Production,” 2017 [Online]. http://world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx
  3. [3] V. N. Dahnov, Interpretacija rezultatov geofizičeskih issledovanij razrezov skvažin. M: Nedra, 448 s. tabl.4, il. 213, 1982.
  4. [4] Ja. I. Kučin, Sistema kompleksnoj interpretacii rezultatov geofizičeskih issledovanij skvažin na plastovo-infiltracionnyh mestoroždenijah urana. Vestnik Akademii Nauk, Almaty, 2008.
  5. [5] TOO GRK, Tehničeskaja instrukcija po provedeniju geofizičeskih issledovanij v skvažinah na plastovo infiltracionnyh mestoroždenijah urana. Almaty, 2010.
  6. [6] Š. A. Guberman, M. L. Izvekova, Ja. I. Xurgin, “Primenenie metodov raspoznavanija obrazov pri interpretacii geofizičeskih dannyh,” Sb. Samoobučajuŝiesja avtomatičeskie sistemy. M: Nauka, 1966.
  7. [7] G. N. Zverev, D. D. Halilov, I. B. Golovackaja. Primenenie algoritma raspoznavanija obrazcov dlja interpretacii promyslovo-geofizičeskih dannyh v Baškirii. Tr. MINHiGP, Vyp. 62. M.: Nedra, 1966.
  8. [8] P. Delfiner, O. Peyret, O. Serra, “Automatic determination of lithology from well logs,” SPE Formation Evaluation, vol. 2, no. 3, pp. 303–310, 1987. https://doi.org/10.2118/13290-pa10.2118/13290-PA
  9. [9] J. M. Busch, W. G. Fortney, L. N. Berry, “Determination of Lithology from Well Logs by Statistical Analysis,” SPE Formation Evaluation, vol. 2, no. 4, pp. 412–418, 1987. https://doi.org/10.2118/14301-pa10.2118/14301-PA
  10. [10] R. I. Muhamediev, E. L. Muhamedieva, Ja. I. Kučin, “Taksonomija metodov mašinnogo obučenija i ocenka kačestva klassifikacii I obučaemosti,” Cloud of Science, Vol. 2. No. 3, pp. 359–378, 2015.
  11. [11] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982. https://doi.org/10.1007/bf0033728810.1007/BF00337288
  12. [12] A. K. Jain, M. N. Murty, P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999. https://doi.org/10.1145/331499.33150410.1145/331499.331504
  13. [13] W. A. Barbakh, Y. Wu, C. Fyfe, “Review of Clustering Algorithms,” Studies in Computational Intelligence, vol. 249, pp. 7–28, 2009. https://doi.org/10.1007/978-3-642-04005-4_210.1007/978-3-642-04005-4_2
  14. [14] C. C. Fung, K. W. Wong, H. Eren and R. Charlebois, “Lithology classification using self-organizing map,” International Conference on Neural Networks, 27 November to 1 December, Perth, Western Australia, vol. 1, pp. 526–531, 1995. https://doi.org/10.1109/icnn.1995.48823310.1109/ICNN.1995.488233
  15. [15] M. Hassibi, I. Ershaghi, F. Aminzadeh, “Chapter 15 High resolution reservoir heterogeneity characterization using recognition technology,” Developments in Petroleum Science, vol. 51, pp. 289–307, 2003. https://doi.org/10.1016/s0376-7361(03)80019-510.1016/S0376-7361(03)80019-5
  16. [16] A. Torghabeh, R. Rezaee, R. Moussavi-Harami, B. Pradhan, M. Kamali, A. Kadkhodaie-Ilkhchi, “Electrofacies in gas shale from well log data via cluster analysis: A case study of the Perth Basin, Western Australia,” Open Geosciences, vol. 6, no. 3, pp. 393–402, Jan. 2014. https://doi.org/10.2478/s13533-012-0177-910.2478/s13533-012-0177-9
  17. [17] A. Toumani, “Fuzzy Classification for Lithology Determination from Well Logs,” Modern Approaches in Geophysics, vol. 21, pp. 125–142, 2003. https://doi.org/10.1007/978-94-017-0271-3_910.1007/978-94-017-0271-3_9
  18. [18] A. N. Corina, Automatic Lithology Prediction from Well Logging Using Kernel Density Estimation. Norwegian University of Science and Technology, 2016.
  19. [19] R. Gelfort, “On Classification of Logging Data,” Dissertation, 2005.
  20. [20] E. Howat, S. Mishra, J. Schuetter, B. Grove and A. Haagsma, “Identification of Vuggy Zones in Carbonate Reservoirs from Wireline Logs Using Machine Learning Techniques,” American Association of Petroleum Geologists Eastern Regional Meeting, 2015.
  21. [21] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, 1991.
  22. [22] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000.10.1017/CBO9780511801389
  23. [23] J. L. Baldwin, R. M. Bateman, C. L. Wheatley, “Application of a neural network to the problem of mineral identification from well logs,” The Log Analyst, vol. 31, no. 5, pp. 279–293, 1990.
  24. [24] L. Aliouane, S.-A. Ouadfeul and A. Boudella, “Well-Logs Data Processing Using the Fractal Analysis and Neural Network,” Fractal Analysis and Chaos in Geosciences, 2012. https://doi.org/10.5772/5187510.5772/51875
  25. [25] M. A. Senilov, “Matematičeskie modeli i programmno-apparatnye sredstva intellektual’nyh sistem dlja interpretacii geofizičeskih issledovanij skvažin,” Dissertacija na soiskanie zvanija doktora tehničeskih nauk, 2005.
  26. [26] I. M. Jasoveev, “Intellektualnaja sistema programmnogo i informacionnogo obespečenija processov kontrolja i obrabotki karotažnyh dannyh i ih interpretacii,” Dissertacija na soiskanie zvanija kandidata tehničeskih nauk, 2006.
  27. [27] P. Tahmasebi, A. Hezarkhani, “A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation,” Computers & Geosciences, vol. 42, pp. 18–27, 2012. https://doi.org/10.1016/j.cageo.2012.02.00410.1016/j.cageo.2012.02.004426858825540468
  28. [28] D. V. Kostikov, “Instrumentalnye sredstva interpretacii geofizičeskih issledovanij skvažin na osnove preobrazovannyh karotažnyh diagramm s pomoŝju mnogoslojnoj nejronnoj seti,” Dissertacija na soiskanie zvanija kandidata tehničeskih nauk, 2007.
  29. [29] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009. https://doi.org/10.1561/220000000610.1561/2200000006
  30. [30] “Deep Neural Networks,” 2017 [Online]. Available: https://www.slideshare.net/Technosphere1/lecture-12-47107587
  31. [31] “Convolutional Neural Networks,” 2017 [Online]. Available: http://cs231n.github.io/convolutional-networks/#add
  32. [32] “Deep Belief Nets,” 2017 [Online]. Available: https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf
  33. [33] “Recurrent Networks,” 2017 [Online]. Available: http://www.intuit.ru/studies/courses/61/61/lecture/20456
DOI: https://doi.org/10.1515/acss-2017-0014 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 21 - 27
Published on: Dec 27, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Yan Kuchin, Jānis Grundspeņķis, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.