Have a personal or library account? Click to login
Approximation of Isomorphic Infinite Two-Person Non-Cooperative Games by Variously Sampling the Players’ Payoff Functions and Reshaping Payoff Matrices into Bimatrix Game Cover

Approximation of Isomorphic Infinite Two-Person Non-Cooperative Games by Variously Sampling the Players’ Payoff Functions and Reshaping Payoff Matrices into Bimatrix Game

Open Access
|Jan 2017

References

  1. [1] M. J. Osborne, An introduction to game theory. Oxford: Oxford University Press, 2003.
  2. [2] N. N. Vorobyov, Game theory fundamentals. Noncooperative games. Moscow: Nauka, 1984 (in Russian).
  3. [3] J. Bergin, “A characterization of sequential equilibrium strategies in infinitely repeated incomplete information games,” Journal of Economic Theory, vol. 47, iss. 1, pp. 51–65, Feb. 1989. https://doi.org/10.1016/0022-0531(89)90102-610.1016/0022-0531(89)90102-6
  4. [4] B. Chen and S. Takahashi, “A folk theorem for repeated games with unequal discounting,” Games and Economic Behavior, vol. 76, iss. 2, pp. 571–581, Nov. 2012. https://doi.org/10.1016/j.geb.2012.07.01110.1016/j.geb.2012.07.011
  5. [5] V. V. Romanuke, “Method of practicing the optimal mixed strategy with innumerable set in its spectrum by unknown number of plays,” Measuring and Computing Devices in Technological Processes, no. 2, pp. 196–203, 2008.
  6. [6] P. V. Reddy and J. C. Engwerda, “Pareto optimality in infinite horizon linear quadratic differential games,” Automatica, vol. 49, iss. 6, pp. 1705–1714, June 2013. https://doi.org/10.1016/j.automatica.2013.03.00410.1016/j.automatica.2013.03.004
  7. [7] X. Chen and X. Deng, “Recent development in computational complexity characterization of Nash equilibrium,” Computer Science Review, vol. 1, iss. 2, pp. 88–99, Dec. 2007. https://doi.org/10.1016/j.cosrev.2007.09.00210.1016/j.cosrev.2007.09.002
  8. [8] D. Friedman, “On economic applications of evolutionary game theory,” Journal of Evolutionary Economics, vol. 8, iss. 1, pp. 15–43, March 1998. https://doi.org/10.1007/s00191005005410.1007/s001910050054
  9. [9] S. Brusco, “Perfect Bayesian implementation in economic environments,” Journal of Economic Theory, vol. 129, iss. 1, pp. 1–30, July 2006. https://doi.org/10.1016/j.jet.2004.12.00210.1016/j.jet.2004.12.002
  10. [10] R. Calvert, M. D. McCubbins, and B. R. Weingast, “A Theory of Political Control and Agency Discretion,” American Journal of Political Science, vol. 33, iss. 3, pp. 588–611, Aug. 1989. https://doi.org/10.2307/211106410.2307/2111064
  11. [11] H. Xie and Y.-J. Lee, “Social norms and trust among strangers,” Games and Economic Behavior, vol. 76, iss. 2, pp. 548–555, Nov. 2012. https://doi.org/10.1016/j.geb.2012.07.01010.1016/j.geb.2012.07.010
  12. [12] L. Forni, “Social security as Markov equilibrium in OLG models,” Review of Economic Dynamics, vol. 8, iss. 1, pp. 178–194, Jan. 2005. https://doi.org/10.1016/j.red.2004.10.00310.1016/j.red.2004.10.003
  13. [13] R. Zhao, G. Neighbour, J. Han, M. McGuire, and P. Deutz, “Using game theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain,” Journal of Loss Prevention in the Process Industries, vol. 25, iss. 6, pp. 927–936, Nov. 2012. https://doi.org/10.1016/j.jlp.2012.05.00410.1016/j.jlp.2012.05.004
  14. [14] J. Scheffran, “The dynamic interaction between economy and ecology: Cooperation, stability and sustainability for a dynamic-game model of resource conflicts,” Mathematics and Computers in Simulation, vol. 53, iss. 4 – 6, pp. 371–380, Oct. 2000. https://doi.org/10.1016/S0378-4754(00)00229-910.1016/S0378-4754(00)00229-9
  15. [15] M. Braham and F. Steffen, “Voting rules in insolvency law: a simple-game theoretic approach,” International Review of Law and Economics, vol. 22, iss. 4, pp. 421–442, Dec. 2002. https://doi.org/10.1016/S0144-8188(02)00113-810.1016/S0144-8188(02)00113-8
  16. [16] G. Stoltz and G. Lugosi, “Learning correlated equilibria in games with compact sets of strategies,” Games and Economic Behavior, vol. 59, iss. 1, pp. 187–208, Apr. 2007. https://doi.org/10.1016/j.geb.2006.04.00710.1016/j.geb.2006.04.007
  17. [17] E. Bajoori, J. Flesch, and D. Vermeulen, “Perfect equilibrium in games with compact action spaces,” Games and Economic Behavior, vol. 82, pp. 490–502, Nov. 2013. https://doi.org/10.1016/j.geb.2013.08.00210.1016/j.geb.2013.08.002
  18. [18] J. Gabarró, A. García, and M. Serna, “The complexity of game isomorphism,” Theoretical Computer Science, vol. 412, iss. 48, pp. 6675–6695, Nov. 2011. https://doi.org/10.1016/j.tcs.2011.07.02210.1016/j.tcs.2011.07.022
  19. [19] C. E. Lemke and J. T. Howson, “Equilibrium points of bimatrix games,” SIAM Journal on Applied Mathematics, vol. 12, iss. 2, pp. 413–423, 1964. https://doi.org/10.1137/011203310.1137/0112033
  20. [20] N. Nisan, T. Roughgarden, É. Tardos and V. V. Vazirani, eds., Algorithmic Game Theory. Cambridge, UK: Cambridge University Press, 2007. https://doi.org/10.1017/CBO978051180048110.1017/CBO9780511800481
  21. [21] N. N. Vorobyov, “Situations of equilibrium in bimatrix games,” Probability theory and its applications, no. 3, pp. 318–331, 1958 (in Russian).10.1137/1103024
  22. [22] H. W. Kuhn, “An algorithm for equilibrium points in bimatrix games,” Proceedings of the National Academy of Sciences of the United States of America, vol. 47, pp. 1657–1662, 1961. https://doi.org/10.1073/pnas.47.10.165710.1073/pnas.47.10.165722318816590888
  23. [23] S. C. Kontogiannis, P. N. Panagopoulou and P. G. Spirakis, “Polynomial algorithms for approximating Nash equilibria of bimatrix games,” Theoretical Computer Science, vol. 410, iss. 15, pp. 1599–1606, Apr. 2009. https://doi.org/10.1016/j.tcs.2008.12.03310.1016/j.tcs.2008.12.033
  24. [24] P. J. Reny, “On the Existence of Pure and Mixed Strategy Equilibria in Discontinuous Games,” Econometrica, vol. 67, iss. 5, pp. 1029–1056, Sep. 1999. https://doi.org/10.1111/1468-0262.0006910.1111/1468-0262.00069
  25. [25] P. Bernhard and J. Shinar, “On finite approximation of a game solution with mixed strategies,” Applied Mathematics Letters, vol. 3, iss. 1, pp. 1–4, 1990. https://doi.org/10.1016/0893-9659(90)90054-F10.1016/0893-9659(90)90054-F
  26. [26] S. C. Kontogiannis and P. G. Spirakis, “On mutual concavity and strategically-zero-sum bimatrix games,” Theoretical Computer Science, vol. 432, pp. 64–76, May 2012. https://doi.org/10.1016/j.tcs.2012.01.01610.1016/j.tcs.2012.01.016
  27. [27] D. Friedman and D. N. Ostrov, “Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two-player games,” Journal of Economic Theory, vol. 148, iss. 2, pp. 743–777, March 2013. https://doi.org/10.1016/j.jet.2012.07.00410.1016/j.jet.2012.07.004
  28. [28] R. Laraki, A. P. Maitra, and W. D. Sudderth, “Two-Person Zero-Sum Stochastic Games with Semicontinuous Payoff,” Dynamic Games and Applications, vol. 3, iss. 2, pp. 162–171, June 2013. https://doi.org/10.1007/s13235-012-0054-710.1007/s13235-012-0054-7
  29. [29] R. Gu, X. Yang, J. Yan, Y. Sun, B. Wang, C. Yuan and Y. Huang, “SHadoop: Improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters,” Journal of Parallel and Distributed Computing, vol. 74, iss. 3, pp. 2166–2179, March 2014. https://doi.org/10.1016/j.jpdc.2013.10.00310.1016/j.jpdc.2013.10.003
  30. [30] H. Moulin, Théorie des jeux pour l’économie et la politique. Paris: Hermann, 1981 (in French).
  31. [31] G. Tian, “Implementation of balanced linear cost share equilibrium solution in Nash and strong Nash equilibria,” Journal of Public Economics, vol. 76, iss. 2, pp. 239–261, May 2000. https://doi.org/10.1016/S0047-2727(99)00041-910.1016/S0047-2727(99)00041-9
  32. [32] S.-C. Suh, “An algorithm for verifying double implementability in Nash and strong Nash equilibria,” Mathematical Social Sciences, vol. 41, iss. 1, pp. 103–110, Jan. 2001. https://doi.org/10.1016/S0165-4896(99)00057-810.1016/S0165-4896(99)00057-8
  33. [33] V. Scalzo, “Pareto efficient Nash equilibria in discontinuous games,” Economics Letters, vol. 107, iss. 3, pp. 364–365, 2010. https://doi.org/10.1016/j.econlet.2010.03.01010.1016/j.econlet.2010.03.010
  34. [34] D. Gąsior and M. Drwal, “Pareto-optimal Nash equilibrium in capacity allocation game for self-managed networks,” Computer Networks, vol. 57, iss. 14, pp. 2817–2832, Oct. 2013. https://doi.org/10.1016/j.comnet.2013.06.01210.1016/j.comnet.2013.06.012
  35. [35] E. Kohlberg and J.-F. Mertens, “On the Strategic Stability of Equilibria,” Econometrica, vol. 54, no. 5, pp. 1003–1037, 1986. https://doi.org/10.2307/191232010.2307/1912320
  36. [36] R. Selten, “Reexamination of the perfectness concept for equilibrium points in extensive games,” International Journal of Game Theory, vol. 4, iss. 1, pp. 25–55, March 1975. https://doi.org/10.1007/BF0176640010.1007/BF01766400
  37. [37] E. van Damme, “A relation between perfect equilibria in extensive form games and proper equilibria in normal form games,” International Journal of Game Theory, vol. 13, iss. 1, pp. 1–13, March 1984. https://doi.org/10.1007/BF0176986110.1007/BF01769861
  38. [38] D. Fudenberg and J. Tirole, “Perfect Bayesian equilibrium and sequential equilibrium,” Journal of Economic Theory, vol. 53, iss. 2, pp. 236–260, Apr. 1991. https://doi.org/10.1016/0022-0531(91)90155-W10.1016/0022-0531(91)90155-W
  39. [39] S. Castro and A. Brandão, “Existence of a Markov perfect equilibrium in a third market model,” Economics Letters, vol. 66, iss. 3, pp. 297–301, March 2000. https://doi.org/10.1016/S0165-1765(99)00208-610.1016/S0165-1765(99)00208-6
  40. [40] H. Haller and R. Lagunoff, “Markov Perfect equilibria in repeated asynchronous choice games,” Journal of Mathematical Economics, vol. 46, iss. 6, pp. 1103–1114, Nov. 2010. https://doi.org/10.1016/j.jmateco.2009.09.00310.1016/j.jmateco.2009.09.003
  41. [41] K. Tanaka and K. Yokoyama, “On ε-equilibrium point in a noncooperative n-person game,” Journal of Mathematical Analysis and Applications, vol. 160, iss. 2, pp. 413–423, Sep. 1991. https://doi.org/10.1016/0022-247X(91)90314-P10.1016/0022-247X(91)90314-P
  42. [42] T. Radzik, “Pure-strategy ε-Nash equilibrium in two-person non-zero-sum games,” Games and Economic Behavior, vol. 3, iss. 3, pp. 356–367, Aug. 1991. https://doi.org/10.1016/0899-8256(91)90034-C10.1016/0899-8256(91)90034-C
DOI: https://doi.org/10.1515/acss-2016-0009 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 5 - 14
Published on: Jan 23, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Vadim V. Romanuke, Vladimir V. Kamburg, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.