Have a personal or library account? Click to login
Alkyl polyglucoside vs. ethoxylated surfactant-based microemulsions as vehicles for two poorly water-soluble drugs: physicochemical characterization and in vivo skin performance Cover

Alkyl polyglucoside vs. ethoxylated surfactant-based microemulsions as vehicles for two poorly water-soluble drugs: physicochemical characterization and in vivo skin performance

Open Access
|Jan 2018

References

  1. 1. S. Heuschkel, A. Goebel and R. H. H. Neubert, Microemulsions - Modern colloidal carrier for dermal and transdermal drug delivery, J. Pharm. Sci. 97 (2008) 603-631; http://dx.doi.org/10.1002/jps.2099510.1002/jps.20995
  2. 2. A. Goebel, U. Knie, C. Abels, J. Wohlrab and R. Neubert, Dermal targeting using colloidal carrier systems with linoleic acid, Eur. J. Pharm. Biopharm. 75 (2010) 162-172; https://doi.org/10.1016/j.ijpharm.2010.11.02910.1016/j.ijpharm.2010.11.029
  3. 3. M. J. Lawrence and G. D. Rees, Microemulsion-based media as novel drug delivery systems, Adv. Drug Deliv. Rev. 64 (2012) 175-193; https://doi.org/10.1016/j.addr.2012.09.01810.1016/j.addr.2012.09.018
  4. 4. K. Fukuda, U. Olsson and M. Ueno, Microemulsion formed by alkyl polyglucoside and an alkyl glycerol ether with weakly charged films, Colloids Surf. B. 20 (2001) 129-135; https://doi.org/10.1016/S0927-7765(00)00183-110.1016/S0927-7765(00)00183-1
  5. 5. A. Goebel, R. Neubert and J. Wohlrab, Dermal targeting of tacrolimus using colloidal carrier systems, Int. J. Pharm. 404 (2011) 159-168; https://doi.org/10.1016/j.ejpb.2010.02.00110.1016/j.ejpb.2010.02.00120170728
  6. 6. W. von Rybinski and K. Hill, Alkyl Polyglycosides - properties and applications of a new class of surfactants, Angew. Chem. Int. E. Engl. 37 (1998) 1328-1345; http://dx.doi.org/10.1002/(SICI)1521-3773(19980605)37:10<;1328::AID-ANIE1328
  7. 7. A. N. El Meshad and M. I. Tadros, Transdermal delivery of an anti-cancer drug via w/o emulsions based on alkyl polyglucosides and lecithin: design, characterization, and in vivo evaluation of the possible irritation potential in rats, AAPS PharmSciTech. 12 (2011) 1-9; https://doi.org/10.1208/s12249-010-9557-y10.1208/s12249-010-9557-y306635121152999
  8. 8. A. Graf, E. Ablinger, S. Peters, A. Zimmer, S. Hook and T. Rades, Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides, Int. J. Pharm. 350 (2008) 351-360; https://doi.org/10.1016/j.ijpharm.2007.08.05310.1016/j.ijpharm.2007.08.05317923347
  9. 9. A. Cichewicz, C. Pacleb, A. Connors, M. A. Hass and L. B. Lopes, Cutaneous delivery of α-tocopherol and lipoic acid using microemulsions: influence of composition and charge, J. Pharm. Pharmacol. 65 (2013) 817-826; https://doi.org/10.1111/jphp.1204510.1111/jphp.12045364888723647675
  10. 10. D. Pepe, J. Phelps, K. Lewis, J. DuJack, K. Scarlett, S. Jahan, E. Bonnier, T. Milic-Pasetto, M. A. Hass and L. B. Lopes, Decylglucoside-based microemulsions for cutaneous localization of lycopene and ascorbic acid, Int. J. Pharm. 434 (2012) 420-428; https://doi.org/10.1016/j.ijpharm.2012.06.01610.1016/j.ijpharm.2012.06.01622692080
  11. 11. A. J. Jain, A. Jain, N. K. Garg, A. Agarwal, A. Jain, S. A. Jain, R. K. Tyagi, R. K. Jain, H. Agrawal and G. P. Agrawal, Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment, Colloids Surf. B. 12 (2014) 222-229; https://doi.org/10.1016/j.colsurfb.2014.05.04110.1016/j.colsurfb.2014.05.04125016424
  12. 12. M. M. Abdellatif, I. A. Khalil and M. A. F. Khalil, Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: in-vitro, ex-vivo and in-vivo evaluation, Int. J. Pharm. 527 (2017) 1-11; https://doi.org/10.1016/j.ijpharm.2017.05.02910.1016/j.ijpharm.2017.05.02928522423
  13. 13. S. Güngör, M. S. Erdal and B. Aksu, New formulation strategies in topical antifungal therapy, JCDSA. 3 (2013) 56-65; http://dx.doi.org/10.4236/jcdsa.2013.31A00910.4236/jcdsa.2013.31A009
  14. 14. G. Bhatia, Y. Zhou and A. K. Banga, Adapalene microemulsion for transfollicular drug delivery, J. Pharm. Sci. 102 (2013) 2622-2631; https://doi.org/10.1002/jps.2362710.1002/jps.2362723728912
  15. 15. A. S. Narang, D. Delmarre and D. Gao, Stable drug encapsulation in micelles and microemulsions, Int. J. Pharm. 345 (2007) 9-25; https://doi.org/10.1016/j.ijpharm.2007.08.05710.1016/j.ijpharm.2007.08.05717945446
  16. 16. M. Miastkowska, M. Banach, J. Pulit-Prociak, E. Sikora, A. Glogowska and M. Zielina, Statistical analysis of optimal ultrasound emulsification parameters in thistle-oil nanoemulsions, J. Surf. Deterg. 20 (2017) 233-246; https://doi.org/10.1007/s11743-016-1887-710.1007/s11743-016-1887-7522292028111519
  17. 17. C. M. Keck, A. Kovacevic, R. H. Müller, S. Savic, G. Vuleta and J. Milic, Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants, Int. J. Pharm. 474 (2014) 3 -41; https://doi.org/10.1016/j.ijpharm.2014.08.00810.1016/j.ijpharm.2014.08.00825108048
  18. 18. M. N. Todosijevic, N. D. Cekic, M. M. Savic, M. Gasperlin, D. V. Randjelovic and S. D. Savic, Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design, Colloid Polym. Sci. 292 (2014) 3061-307; https://doi.org/10.1007/s00396-014-3351-410.1007/s00396-014-3351-4
  19. 19. J. Zhang and B. Michniak-Kohn, Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine, Int. J. Pharm. 421 (2011) 34-44; https://doi.org/10.1016/j.ijpharm.2011.09.01410.1016/j.ijpharm.2011.09.01421959104
  20. 20. E. Berardesca, EEMCO guidance for the assessment of stratum corneum hydration: electrical methods, Skin Res. Tech. 3 (1997) 126-132; http://dx.doi.org/10.1111/j.1600-0846.1997.tb00174.x10.1111/j.1600-0846.1997.tb00174.x27333374
  21. 21. P. Clarys, K. Alewaeters, R. Lambrecht and A.O. Barel, Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®, Skin Res. Technol. 6 (2000) 230-238; https://doi.org/10.1034/j.1600-0846.2000.006004230.x10.1034/j.1600-0846.2000.006004230.x11428962
  22. 22. V. Rogiers, EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences, Skin Pharmacol. Appl. Skin Physiol. 14 (2001) 117-128; http://dx.doi.org/10.1159/00005634110.1159/000056341
  23. 23. L. D. Ryan and E. W. Kaler, Alkyl polyglucoside microemulsion phase behaviour, Colloids Surf. A. 176 (2001) 69-83; https://doi.org/10.1016/S0927-7757(00)00614-210.1016/S0927-7757(00)00614-2
  24. 24. M. Fanun, Phase behavior, transport, diffusion and structural parameters of nonionic surfactants microemulsions, J. Mol. Liq. 139 (2008) 14-22; https://doi.org/10.1016/j.molliq.2007.10.00510.1016/j.molliq.2007.10.005
  25. 25. L. Djekic, M. Primorac and J. Jockovic, Phase behaviour, microstructure and ibuprofen solubilization capacity of pseudo-ternary nonionic microemulsions, J. Mol. Liq. 160 (2011) 81-87; https://doi.org/10.1016/j.molliq.2011.02.01010.1016/j.molliq.2011.02.010
  26. 26. G. Coneac, V. Vlaia, I. Olariu, A. M. Mut, D. F. Anghel, C. Ilie, C. Popoiu, D. Lupuleasa and L. Vlaia, Development and evaluation of new microemulsion-based hydrogel formulations for topical de of fluconazole, AAPS PharmSciTech, 16 (2015) 889-904; https://doi.org/10.1208/s12249-014-0275-810.1208/s12249-014-0275-8450830725591952
  27. 27. S. K. Mehta and K. Bala, Volumetric and transport properties in microemulsions and the point of view of percolation theory, Physical Review E. 51 (1995) 5732-5737.10.1103/PhysRevE.51.57329963307
  28. 28. A. Zvonar, B. Rozman, M. Bester Rogac and M. Gasperlin, The influence of microstructure on celecoxib release from a pharmaceutically applicable system: Mygliol 812®/Labrasol®/PlurolOleique®/Water mixtures, Acta Chim. Slov. 56 (2009) 131-138.
  29. 29. M. Fanun, Conductivity, viscosity, NMR and diclofenac solubilization capacity studies of mixed nonionic surfactants microemulsions, J. Mol. Liq. 135 (2007) 5-13; https://doi.org/10.1016/j.molliq.2006.09.00310.1016/j.molliq.2006.09.003
  30. 30. F. Podlogar, M. Gasperlin, M. Tomsic, A. Jamnik and M. Bester Rogac, Structural characterisation of water-Tween 40®/Imwitor 308®-isopropyl myristate microemulsions using different experimental methods, Int. J. Pharm. 276 (2004) 115-128; https://doi.org/10.1016/j.ijpharm.2004.02.01810.1016/j.ijpharm.2004.02.01815113620
  31. 31. M. Fanun, Properties of microemulsions with sugar surfactants and peppermint oil, Colloid Polym. Sci. 287 (2009) 899-910; https://doi.org/10.1007/s00396-009-2043-y10.1007/s00396-009-2043-y
  32. 32. R. M. Hathout, T. J. Woodman, S. Mansour, N. D. Mortada, A. S. Geneidi and R. H. Guy, Microemulsion formulations for the transdermal delivery of testosterone, Eur. J. Pharm. Sci. 40 (2010) 188-196; https://doi.org/10.1016/j.ejps.2010.03.00810.1016/j.ejps.2010.03.00820304048
DOI: https://doi.org/10.1515/acph-2017-0036 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 415 - 439
Accepted on: Sep 18, 2017
Published on: Jan 11, 2018
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2018 Nataša Z. Bubić Pajić, Marija N. Todosijević, Gordana M. Vuleta, Nebojša D. Cekić, Vladimir D. Dobričić, Sonja R. Vučen, Bojan R. Čalija, Milica Ž. Lukić, Tanja M. Ilić, Snežana D. Savić, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.