Have a personal or library account? Click to login
Effect of γ-ethyl-γ-phenyl-butyrolactone (EFBL), anticonvulsant and hypnotic drug, on mouse brain catecholamine levels Cover

Effect of γ-ethyl-γ-phenyl-butyrolactone (EFBL), anticonvulsant and hypnotic drug, on mouse brain catecholamine levels

Open Access
|Jun 2017

References

  1. 1. M. Dematteis, L. Pennel and M. Mallaret, Current knowledge on gamma-hydroxybutyric acid (GHB), gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), Rev. Prat. 62 (2012) 669-672.
  2. 2. F. Vega-Díaz and F. Vega-Rasgado, 4-Etil-4-fenil-butirolactona, nuevo anticonvulsionante, An. Esc. Nac. Cienc. Biol. Méx. 34 (1991) 23-35.
  3. 3. M. F. Vega-Díaz, L. A. Vega Rasgado and R. Yañez, La 4-etil-4-fenil-butirolactona, nuevo fármaco anticonvulsivo y sus relaciones con el metabolismo del GABA, Acta Med. XXX (1994) 9-18.
  4. 4. F. Vega-Díaz, S. García and F. Vega-Rasgado, Propiedades hipnóticas de la 4-etil-4-fenil-butirolactona, An. Esc. Nac. Cienc. Biol. Méx. 37 (1992) 155-170.
  5. 5. A. Schousboe, K. K. Madsen, M. L. Barker-Haliski and H. S. White, The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters, Neurochem. Res. 39 (2014) 1980-1987; DOI: 10.1007/s11064-014-1263-9.10.1007/s11064-014-1263-9
  6. 6. A. Sarup, O. M. Larsson and A. Schousboe, GABA transporters and GABA-transaminase as drug targets, Curr. Drug Targets CNS Neurol. Disord. 2 (2003) 269-277; DOI: 10.2174/1568007033482788.10.2174/1568007033482788
  7. 7. M. Avoli and M. de Curtis, GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity, Prog. Neurobiol. 95 (2011) 104-132; DOI: 10.1016/j.pneurobio.2011.07.003.10.1016/j.pneurobio.2011.07.003
  8. 8. V. Tancredi, G. G. Hwa, C. Zona, A. Brancati and M. Avoli, Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features, Brain Res. 2 (1990)280-290; DOI: 10.1016/0006-8993(90)90173-9.10.1016/0006-8993(90)90173-9
  9. 9. M. Avoli, J. Louvel, I. Kurcewicz, R. Pumain and M. Barbarosie, Extracellular free potassium and calcium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus, J. Physiol. 493 (1996) 707-717; DOI: 10.1113/jphysiol.1996.sp021416.10.1113/jphysiol.1996.sp021416
  10. 10. M. E. Morris, G. V. Obrocea and M. Avoli, Extracellular K+ accumulations and synchronous GABA- mediated potentials evoked by 4-aminopyridine in the adult rat hippocampus, Exp. Brain Res. 109 (1996) 71-82; DOI: 10.1007/BF00228628.10.1007/BF00228628
  11. 11. Y. Ben-Ari, J. L. Gaiarsa, R. Tyzio and R. Khazipov, GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations, Physiol. Rev. 87 (2007) 1215-1284; DOI: 10.1152/physrev.00017.2006.10.1152/physrev.00017.2006
  12. 12. A. T. Gulledge and G. J. Stuart, Excitatory actions of GABA in the cortex, Neuron 37 (2003) 299-309; DOI: 10.1016/S0896-6273(02)01146-7.10.1016/S0896-6273(02)01146-7
  13. 13. Y. Bozzi, M. Dunleavy and D. C. Henshall, Cell signaling underlying epileptic behavior, Front. Behav. Neurosci. 5 (2011) Article 45 (11 pages); DOI: 10.3389/fnbeh.2011.00045.10.3389/fnbeh.2011.00045
  14. 14. M. A. Kurian, P. Gissen, M. Smith, S. Heales, Jr. and P. T. Clayton, The monoamine neurotransmitter disorders: an expanding range of neurological syndromes, Lancet Neurol. 10 (2011) 721-733; DOI: 10.1016/S1474-4422(11)70141-7.10.1016/S1474-4422(11)70141-7
  15. 15. F. S. Giorgi, C. Pizzanelli, F. Biagioni, L. Murri and F. Fornai, The role of norepinephrine in epilepsy: from the bench to the bedside, Neurosci. Biobehav. Rev. 28 (2004) 507-524; DOI: 10.1016/j.neubiorev.2004.06.008.10.1016/j.neubiorev.2004.06.008
  16. 16. M. Pinon, I. S. Racotta, R. Ortiz-Butron and R. Racotta, Catecholamines in paraganglia associated with the hepatic branch of the vagus nerve: effects of 6-hydroxydopamine and reserpine, J. Auton. Nerv. Syst. 75 (1999) 131-135.10.1016/S0165-1838(98)00184-2
  17. 17. S. Qazi, M. Caberlin and N. Nigam, Mechanism of psychoactive drug action in the brain: simulation modeling of GABAA receptor interactions at non-equilibrium conditions, Curr. Pharm. Des. 13 (2007) 1437-1455; DOI: 10.2174/138161207780765972.10.2174/138161207780765972
  18. 18. S. M. Simpson, A. J. Hickey, G. B. Baker, J. N. Reynolds and R. J. Beninger, The antidepressant phenelzine enhances memory in the double Y-maze and increases GABA levels in the hippocam pus and frontal cortex of rats, Pharmacol. Biochem. Behav. 102 (2012) 109-117; DOI: 10.1016/j.pbb.2012.03.027.10.1016/j.pbb.2012.03.027
  19. 19. M. P. Galloway, M. E. Wolf and R. H. Roth, Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo, J. Pharmacol. Exp. Ther. 236 (1986) 689-698.
  20. 20. R. L. Macdonald, M. J. McLean and J. H. Skerritt, Anticonvulsant drug mechanisms of action, Fed. Proc. 44 (1985) 2634-2639; DOI: 10.1016/0013-4694(85)90099-9.10.1016/0013-4694(85)90099-9
  21. 21. J. O. McNamara, D. W. Bonhaus, B. J. Crain, R. L. Geliman and D. Shin, Biochemical and Pharmacologic Studies of Neurotransmitters in the Kindling Model, in Neurotransmitters and Epilepsy (Eds. P. C. Jobe and H. E. Laird II), Humana Press, Clifton (NJ) 1986, pp. 115-148.10.1007/978-1-59259-462-7_6
  22. 22. C. Beas Zárate, J. Arauz-Contreras, A. Velazquez and A. Fería-Velasco, Monosodium L-glutamateinduced convulsions - II. Changes in catecholamine concentrations in various brain areas of adult rats, Gen. Pharmacol. 16 (1985) 489-493; DOI: 10.1016/0306-3623(85)90009-6.10.1016/0306-3623(85)90009-6
  23. 23. C. Beas Zárate, R. Schliebs, A. Morales-Villagrán and A. Fería-Velasco, Monosodium L-glutamateinduced convulsions: changes in uptake and release of catecholamines in cerebral cortex and caudate nucleus of adult rats, Epilepsy Res. 4 (1989) 20-27; DOI: 10.1016/0920-1211(89)90054-5.10.1016/0920-1211(89)90054-5
  24. 24. M. S. Starr, The role of dopamine in epilepsy, Synapse 22 (1996) 159-194; DOI: 10.1002/(SICI)1098-2396(199602)22:2<;159::AID-SYN8>3.0.CO;2-C.10.1002/(SICI)1098-2396(199602)22:2<;159::AID-SYN8>3.0.CO;2-C
  25. 25. S. C. Chen, Epilepsy and migraine: The dopamine hypotheses, Med. Hypotheses 66 (2006) 466-472; DOI: 10.1016/j.mehy.2005.09.045.10.1016/j.mehy.2005.09.045
  26. 26. M. P. DeNinno, R. Schoenleber, R. J. Perner, L. Lijewski, K. E. Asin, D. R. Britton, R. MacKenzie and J. W. Kebabian, Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)-3,4- dihydro-5,6-dihydroxy-1H-2-benzopyrans: characterization of an auxiliary binding region in the D1 receptor, J. Med. Chem. 34 (1991) 2561-2569; DOI: 10.1021/jm00112a034.10.1021/jm00112a034
  27. 27. M.-Y. Arsenault, A. Parent, P. Séguéla and L. Descarries, Distribution and morphological characteristics of dopamine-immunoreactive neurons in the midbrain of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol. 267 (1988) 489-506; DOI: 10.1002/cne.902670404.10.1002/cne.902670404
  28. 28. G. B. Baker, J. T. Wong, J. M. Yeung and R. T. Coutts, Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA), J. Affect. Disord. 21 (1991) 207-211; DOI: 10.1016/0165-0327(91)90041-P.10.1016/0165-0327(91)90041-P
DOI: https://doi.org/10.1515/acph-2017-0014 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 215 - 226
Accepted on: Dec 16, 2016
Published on: Jun 1, 2017
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2017 Lourdes A. Vega Rasgado, Iván Villanueva, Fernando Vega Díaz, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.