Have a personal or library account? Click to login
A superior preparation method for daidzein-hydroxypropyl-β-cyclodextrin complexes with improved solubility and dissolution: Supercritical fluid process Cover

A superior preparation method for daidzein-hydroxypropyl-β-cyclodextrin complexes with improved solubility and dissolution: Supercritical fluid process

Open Access
|Feb 2017

References

  1. 1. S. Soumyakrishnan, T. Divya, S. Kalayarasan, N. Sriram and G. Sudhandiran, Daidzein exhibits anti-fibrotic effect by reducing the expressions of Proteinase activated receptor 2 and TGFbeta1/ Smad mediated inflammation and apoptosis in Bleomycin-induced experimental pulmonary fibrosis, Biochimie 103 (2014) 23-36; DOI: 10.1016/j.biochi.2014.04.005.10.1016/j.biochi.2014.04.00524769130
  2. 2. B. Pahari, B. Sengupta, S. Chakraborty, B. Thomas, D. McGowan and P. K. Sengupta, Contrasting binding of fisetin and daidzein in gamma-cyclodextrin nanocavity, J. Photochem. Photobiol. B. 118 (2013) 33-41; DOI: 10.1016/j.jphotobiol.2012.10.010.10.1016/j.jphotobiol.2012.10.010355358923177044
  3. 3. X. Dong, W. Xu, R. A. Sikes and C. Wu, Combination of low dose of genistein and daidzein has synergistic preventive effects on isogenic human prostate cancer cells when compared with individual soy isoflavone, Food. Chem. 141 (2013) 1923-1933; DOI: 10.1016/j.foodchem.2013.04.109.10.1016/j.foodchem.2013.04.10923870911
  4. 4. H. J. Park, Y. K. Jeon, D. H. You and M. J. Nam, Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells, Food. Chem. Toxicol. 60 (2013) 542-549; DOI: 10.1016/j.fct.2013.08.022.10.1016/j.fct.2013.08.02223959101
  5. 5. B. S. Pan, Y. Y. Kuo, T. Y. Chen and Y. C. Liu, Anti-oxidative and anti-inflammatory activities of two different species of a Chinese herb I-Tiao-Gung, Life Sci. 77 (2005) 2830-2839; DOI: 10.1016/j. lfs.2005.05.027.
  6. 6. M. H. Park, J. W. Ju, M. J. Park and J. S. Han, Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice, Eur. J.Pharmacol. 712 (2013) 48-52; DOI: 10.1016/j.ejphar.2013.04.047.10.1016/j.ejphar.2013.04.04723669248
  7. 7. H. J. Oh, Y. G. Kang, T. Y. Na, H. J. Kim, J. S. Park, W. J. Cho and M. O. Lee, Identification of daidzein as a ligand of retinoic acid receptor that suppresses expression of matrix metalloproteinase-9 in HaCaT cells, Mol. Cell. Endocrin. 376 (2013) 107-113; DOI: 10.1016/j.mce.2013.06.015.10.1016/j.mce.2013.06.01523791815
  8. 8. Y. Ma, X. Zhao, J. Li and Q. Shen, The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability, Int. J. Nanomed. 7 (2012) 559-570; DOI: 10.2147/IJN.S27641.10.2147/IJN.S27641327743622346351
  9. 9. T. Loftsson and D. Duchêne, Cyclodextrins and their pharmaceutical applications, Int. J. Pharm. 329 (2007) 1-11; DOI: 10.1016/j.ijpharm.2006.10.044.10.1016/j.ijpharm.2006.10.04417137734
  10. 10. T. Loftsson and M. E. Brewster, Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization, J. Pharm. Sci. 85 (1996) 1017-1025; DOI: 10.1021/js950534b.10.1021/js950534b8897265
  11. 11. F. K. Yatsu, L. S. Koester, I. Lula, J. J. Passos and R. Sinisterra, Multiple complexation of cyclodextrin with soy isoflavones present in an enriched fraction, Carbohyd. Polym. 98 (2013) 726-735; DOI: 10.1016/j.carbpol.2013.06.062.10.1016/j.carbpol.2013.06.06223987405
  12. 12. F. K. Yatsu, L. S. Koester, I. Lula, J. J. Passos, R. Sinisterra and V. L. Bassani, Cyclodextrin-based pharmaceutics: past, present and future, Nat. Rev. Drug. Discov. 3 (2004) 1023-1035; DOI: 10.1038/ nrd1576.10.1038/nrd157615573101
  13. 13. S. W. Jun, M. S. Kim, J. S. Kim, H. J. Park, S. Lee, J. S. Woo and S. J. Hwang, Preparation and characterization of simvastatin/hydroxypropyl-beta-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process, Eur. J. Pharm. Biopharm. 66 (2007) 413-421; DOI: 10.1016/j. ejpb.2006.11.013.
  14. 14. Q. L. Zhu, T. Guo, D. N. Xia, X. Y. Li, C. L. Zhu, H. Y. Li, D. F. Ouyang, J. W. Zhang and Y. Gan, Pluronic F127-modified liposome-containing tacrolimus-cyclodextrin inclusion complexes: improved solubility, cellular uptake and intestinal penetration, J. Pharm. Pharmacol. 65 (2013) 1107-1117; DOI: 10.1111/jphp.12074.10.1111/jphp.1207423837579
  15. 15. Q. L. Zhu, X. Y. Li, D. N. Xia, H. Z. Yu, D. Chen, W. W. Fan and Y. Gan, Lipid-based formulations for oral drug delivery: effects on drug absorption and metabolism, Curr. Drug. Metab. 16 (2015) 200-210; DOI: 10.2174/138920021603150812121453.10.2174/13892002160315081212145326279327
  16. 16. L. M. Ensign, C. Richard and H. Justin, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers, Adv. Drug Deliv. Rev. 64 (2012) 557-570; DOI: 10.1016/j.addr.2011.12.009. 10.1016/j.addr.2011.12.009332227122212900
DOI: https://doi.org/10.1515/acph-2017-0005 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 85 - 97
Accepted on: Sep 10, 2016
|
Published on: Feb 21, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2017 Hao Pan, Han-Bing Wang, Yi-Bin Yu, Bing-Chao Cheng, Xiao-Yu Wang, Ying Li, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.