Have a personal or library account? Click to login
Charge transfer interaction of organic p-acceptors with the anti-hyperuricemic drug allopurinol: Insights from IR, Raman, 1H NMR and 13C NMR spectroscopies Cover

Charge transfer interaction of organic p-acceptors with the anti-hyperuricemic drug allopurinol: Insights from IR, Raman, 1H NMR and 13C NMR spectroscopies

Open Access
|Oct 2016

References

  1. 1. A. Chalmers, R. Parker, H. A. Simmonds, W. Snedden and W. E. Watts, The conversion of 4-hydroxypyrazolo[3,4-d]pyrimidine (allopurinol) into 4,6-dihydroxypyrazolo[3,4-d]pyrimidine (oxipurinol) in vivo in the absence of xanthine-oxygen oxidoreductase, Biochem. J. 112 (1969) 527-532.10.1042/bj1120527
  2. 2. M. Tabandeh, S. Ghassamipour, H. Aqababa, M. Tabatabaei and M. Hasheminejad, Computational design and synthesis of molecular imprinted polymers for selective extraction of allopurinol from human plasma, J. Chromatogr. B 898 (2012) 24-31; DOI: 10.1016/j.jchromb.2012.04.009.10.1016/j.jchromb.2012.04.009
  3. 3. T. F. Yu and A. B. Gutman, Effect of allopurinol (4-hydroxypyrazolo-(3,4-d)pyrimidine) on serum and urinary uric acid in primary and secondary gout, Am. J. Med. 37 (1964) 885-891; DOI: 10.1016/0002-9343(64)90131-7.10.1016/0002-9343(64)90131-7
  4. 4. C. G. Jennings, I. S. Mackenzie, R. Flynn, I. Ford, G. Nuki, R. De Caterina, P. L. Riches, S. H. Ralston and T. M. MacDonald, Up-titration of allopurinol in patients with gout, Semin. Arthritis Rheum. 44 (2014) 25-30; DOI: 10.1016/j.semarthrit.2014.01.004.10.1016/j.semarthrit.2014.01.004
  5. 5. T. R. Mikuls, J. T. Farrar, W. B. Bilker, S. Fernandes, H. R. Schumacher and K. G. Saag, Gout epidemiology: results from the UK general practice research database, 1990-1999, Ann. Rheum. Dis. 64 (2005) 267-272; DOI: 10.1136/ard.2004.024091.10.1136/ard.2004.024091
  6. 6. J. Prickaerts, E. T. Gieling, A. K. Bruder, F. J. van der Staay and T. Vanmierlo, Long-term effects of prenatal allopurinol treatment on brain plasticity markers in low and normal birth weight piglets, Int. J. Dev. Neurosci. 33 (2014) 29-32; DOI: 10.1016/j.ijdevneu.2013.11.001.10.1016/j.ijdevneu.2013.11.001
  7. 7. D. N. I. Boda, P. Kiss and H. Orvos, Treatment of mothers with allopurinol to produce therapeutic blood levels in newborns, Prenatal Neonatal Med. 4 (1999) 130-134.
  8. 8. G. Dong, M. Ren, X. Wang, H. Jiang, X. Yin, S. Wang, X. Wang and H. Feng, Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats, Neurotoxicology 48 (2015) 171-179; DOI: 10.1016/j.neuro.2015.03.015.10.1016/j.neuro.2015.03.015
  9. 9. A. Torreggiani, M. Tamba, A. Trinchero and G. Fini, A spectroscopic and pulse radiolysis study of allopurinol and its copper complex, J. Mol. Struct. 651-653 (2003) 91-99; DOI: 10.1016/S0022-2860(02)00631-2.10.1016/S0022-2860(02)00631-2
  10. 10. A. M. A. Adam and M. S. Refat, Nanostructured products of the drug theophylline caused by charge transfer interactions and a binary solvent system: Morphology and nanometry, J. Mol. Liq. 209 (2015) 33-41; DOI: 10.1016/j.molliq.2015.05. 021.
  11. 11. B. K. Bozoğlan, S. Tunç and O. Duman, Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods, J. Lumin. 155 (2014) 198-204; DOI: 10.1016/j. jlumin.2014.06.032.
  12. 12. M. Saravanabhavan, K. Sathya, V. G. Puranik and M. Sekar, Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies, Spectrochim. Acta A 118 (2014) 399-406; DOI: 10.1016/j. saa.2013.08.115.
  13. 13. N. Singh and A. Ahmad, Synthesis and spectrophotometric studies of charge transfer complexes of p-nitroaniline with benzoic acid in different polar solvents, J. Mol. Struct. 1074 (2014) 408-415; DOI: 10.1016/j.molstruc.2014.05.076.10.1016/j.molstruc.2014.05.076
  14. 14. E. Selvakumar, A. Chandramohan, G. A. Babu and P. Ramasamy, Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate, J. Cryst. Growth 401 (2014) 323-326; DOI: 10.1016/j.jcrysgro.2013.10.053.10.1016/j.jcrysgro.2013.10.053
  15. 15. N. Singh, I. M. Khan, A. Ahmad and S. Javed, Synthesis, crystallographic and spectrophotometric studies of charge transfer complex formed between 2,2′-bipyridine and 3,5-dinitrosalicylic acid, J. Mol. Liq. 191 (2014) 142-150; DOI: 10.1016/j.molliq.2013.12.002.10.1016/j.molliq.2013.12.002
  16. 16. A. M. A. Adam, Nano-structured complexes of reserpine and quinidine drugs with chloranilic acid based on intermolecular H-bond: Spectral and surface morphology studies, Spectrochim. Acta A 127 (2014) 107-114; DOI: 10.1016/ j.saa.2014.02.077.
  17. 17. M. S. Refat, H. A. Saad and A. M. A. Adam, Spectral, thermal and kinetic studies of chargetransfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors, Spectrochim. Acta A 141 (2015) 202-210; DOI: 10.1016/j. saa.2015.01.029.
  18. 18. M. S. Refat, G. G. Mohamed and A. Fathi, Spectrophotometric determination of allopurinol drug in tablets: Spectroscopic characterization of the solid CT complexes, Bull. Korean Chem. Soc. 31 (2010) 1535-1542; DOI: 10.5012/bkcs.2010.31.6.1535.10.5012/bkcs.2010.31.6.1535
  19. 19. M. Manikandan, T. Mahalingam, Y. Hayakawa and G. Ravi, Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts, Spectrochim. Acta A 101 (2013) 178-183; DOI: 10.1016/j.saa.2012.08.086.10.1016/j.saa.2012.08.08623103458
  20. 20. I. A. Darwish, J. M. Alshehri, N. Z. Alzoman, N. Y. Khalil and H. M. Abdel-Rahman, Chargetransfer reaction of 1,4-benzoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib, Spectrochim. Acta A 131 (2014) 347-354; DOI: 10.1016/j.saa.2014.04.099.10.1016/j.saa.2014.04.09924835938
  21. 21. H. M. Elqudaby, G. G. Mohamed and G. M. G. El-Din, Analytical studies on the charge transfer complexes of loperamide hydrochloride and trimebutine drugs. Spectroscopic and thermal characterization of CT complexes, Spectrochim. Acta A 129 (2014) 84-95; DOI: 10.1016/j.saa.2014.02.110.10.1016/j.saa.2014.02.11024727166
  22. 22. M. S. Refat, L. A. Ismail and A. M. A. Adam, Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states, Spectrochim. Acta A 134 (2015) 288-301; DOI: 10.1016/ j.saa.2014.06.107.
DOI: https://doi.org/10.1515/acph-2016-0045 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 533 - 542
Accepted on: Jul 25, 2016
Published on: Oct 15, 2016
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Moamen S. Refat, Hosam A. Saad, Abdel Majid A. Adam, Mohamed A. Al-Omar, Ahmed M. Naglah, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.