Have a personal or library account? Click to login
Pleiotropic effects of niacin: Current possibilities for its clinical use Cover

Pleiotropic effects of niacin: Current possibilities for its clinical use

Open Access
|Oct 2016

References

  1. 1. [No authors listed] Clofibrate and niacin in coronary heart disease, JAMA 231 (1975) 360-381; DOI: 10.1001/jama.1975.03240160024021.10.1001/jama.1975.03240160024021
  2. 2. P. L. Canner, K. G. Berge, N. K. Wenger, J. Stamler, L. Friedman, R. J. Prineas and W. Friedewald, Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin, J. Am. Coll. Cardiol. 8 (1986) 1245-1255; DOI: 10.1016/S0735-1097(86)80293-5.10.1016/S0735-1097(86)80293-5
  3. 3. W. Hochholzer, D. D. Berg and R. P. Giugliano, The facts behind niacin, Ther. Adv. Cardiovasc. Dis. 5 (2011) 227-240; DOI: 10.1177/1753944711419197.10.1177/175394471141919721893559
  4. 4. L. A. Carlson, A. Hamsten and A. Asplund, Pronounced lowering of serum levels of lipoprotein Lp(a) in hyperlipidaemic subjects treated with nicotinic acid, J. Intern. Med. 226 (1989) 271-276; DOI: 10.1111/j.1365-2796.1989.tb01393.x.10.1111/j.1365-2796.1989.tb01393.x2530298
  5. 5. R. S. Birjmohun, B. A. Hutten, J. J. Kastelein and E. S. Stroes, Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials, J. Am. Coll. Cardiol. 45 (2005) 185-197; DOI: 10.1016/j.jacc.2004.10.031.10.1016/j.jacc.2004.10.03115653014
  6. 6. L. A. Carlson, Nicotinic acid and other therapies for raising high-density lipoprotein, Curr. Opin.Cardiol. 21 (2006) 336-344; DOI: 10.1097/01.hco.0000231404.76930.e9.10.1097/01.hco.0000231404.76930.e916755203
  7. 7. V. S. Kamanna and M. L. Kashyap, Mechanism of action of niacin, Am. J. Cardiol. 101 (2008) 20B-26B; DOI: 10.1016/j.amjcard.2008.02.029.10.1016/j.amjcard.2008.02.02918375237
  8. 8. L. H. Zhang, V. S. Kamanna, S. H. Ganji, X. M. Xiong and M. L. Kashyap, Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells, J. Lipid Res. 53 (2012) 941-950; DOI: 10.1194/jlr.M020917.10.1194/jlr.M020917332939322389325
  9. 9. T. Sakai, V. S. Kamanna and M. L. Kashyap, Niacin, but not gemfibrozil, selectively increases LPAI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol, Arterioscler. Thromb. Vasc. Biol. 21 (2001) 1783-1789; DOI: 10.1161/hq1001.096624.10.1161/hq1001.09662411701466
  10. 10. A. Otocka-Kmiecik, D. P. Mikhailidis, S. J. Nicholls, M. Davidson, J. Rysz and M. Banach, Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease, Prog.Lipid Res. 51 (2012) 314-324; DOI: 10.1016/j.plipres.2012.03.003.10.1016/j.plipres.2012.03.00322609245
  11. 11. C. Mineo and P. W. Shaul, Novel biological functions of high-density lipoprotein cholesterol, Circ. Res. 111 (2012) 1079-1090; DOI: 10.1161/CIRCRESAHA.111.258673.10.1161/CIRCRESAHA.111.258673350060623023510
  12. 12. L. A. Carlson and G. Rosenhamer, Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid, Acta Med. Scand. 223 (1988) 405-418; DOI: 10.1111/j.0954-6820.1988.tb15891.x.10.1111/j.0954-6820.1988.tb15891.x3287837
  13. 13. D. H. Blankenhorn, S. A. Nessim, R. L. Johnson, M. E. Sanmarco, S. P. Azen and L. Cashin-Hemphill, Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts, JAMA 257 (1987) 3233-3240; DOI: 10.1001/jama.1987.03390230069027.10.1001/jama.1987.03390230069027
  14. 14. G. Brown, J. J. Albers, L. D. Fisher, S. M. Schaefer, J. T. Lin, C. Kaplan, X. Q. Zhao, B. D. Bisson, V. F. Fitzpatrick and H. T. Dodge, Regression of coronary artery disease as a result of intensive lipidlowering therapy in men with high levels of apolipoprotein B, N. Engl. J. Med. 323 (1990) 1289-1298; DOI: 10.1056/NEJM199011083231901.10.1056/NEJM1990110832319012215615
  15. 15. W. E. Boden, J. L. Probstfield, T. Anderson, B. R. Chaitman, P. Desvignes-Nickens, K. Koprowicz, R. McBride, K. Teo, W. Weintraub and collaborators (316), Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy, N. Engl. J. Med. 365 (2011) 2255-2267; DOI: 10.1056/ NEJMoa1107579.10.1056/NEJMoa110757922085343
  16. 16. HPS2-THRIVE collaborative group (1472), M. J. Landray, R. Haynes, J. C. Hopewell, S. Parish, T. Aung, J. Tomson, K. Wallendszus, M. Craig, L. Jiang, R. Collins and J. Armitage, Effects of extended- release niacin with laropiprant in high-risk patients, N. Engl. J. Med. 371 (2014) 203-212; DOI: 10.1056/NEJMoa1300955.10.1056/NEJMoa130095525014686
  17. 17. J. R. Guyton, M. E. McGovern and L. A. Carlson, Niacin (Nicotinic Acid), in Clinical Lipidology. A Companion to Braunwald´s Heart Disease (Ed. C. M. Ballantyne), 2nd ed., Elsevier, Sainders, Philadelphia 2015, pp. 274-284.10.1016/B978-0-323-28786-9.00024-4
  18. 18. S. J. Nicholls, Is niacin ineffective? Or did AIM-HIGH miss its target?, Clev. Clin. J. Med. 79 (2012) 38-43; DOI: 10.3949/ccjm.79a.11166.10.3949/ccjm.79a.1116622219232
  19. 19. Z. Blomgarden and Y. Handelsman, Did AIM-HIGH aim too low?, J. Diabetes 4 (2012) 1-2; DOI: 10.1111/j.1753-0407.2011.00176.x.10.1111/j.1753-0407.2011.00176.x22141573
  20. 20. J. R. Guyton, A. E. Slee, T. Anderson, J. L. Fleg, R. B. Goldberg, M. L. Kashyap, S. M. Marcovina, S. D. Nash, K. D. O‘Brien, W. S. Weintraub, P. Xu, X. Q. Zhao and W. E. Boden, Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis intervention in metabolic syndrome with low HDL/high triglycerides and impact on global health outcomes), J. Am. Coll. Cardiol. 62 (2013) 1580-1584; DOI: 10.1016/j.jacc.2013.07.023.10.1016/j.jacc.2013.07.023386244623916935
  21. 21. I. Gaidarov, X. Chen, T. Anthony, D. Maciejewski-Lenoir, C. Liaw and D. J. Unett, Differential tissue and ligand-dependent signaling of GPR109A receptor: Implications for anti-atherosclerotic therapeutic potential, Cell. Signal. 25 (2013) 2003-2016; DOI: 10.1016/j.cellsig.2013.06.008.10.1016/j.cellsig.2013.06.00823770183
  22. 22. Y. L. Yang, M. Hu, M. Chang and B. Tomlinson, A high incidence of exanthematous eruption associated with niacin/laropiprant combination in Hong Kong Chinese patients, J. Clin. Pharm. Ther. 38 (2013) 528-532; DOI: 10.1111/jcpt.12096.10.1111/jcpt.1209624020480
  23. 23. M. Zeman, M. Vecka, F. Perlík, R. Hromádka, B. Stanková, E. Tvrzická and A. Žák, Niacin in the treatment of hyperlipidemias in light of new clinical trials: Has niacin lost its place?, Med. Sci. Monit. 21 (2015) 2156-2162; DOI: 10.12659/MSM.893619.10.12659/MSM.893619452300626210594
  24. 24. J. T. Chai, J. E. Digby and R. P. Choudhury, GPR109A and vascular inflammation, Curr. Atheroscler. Rep. 15 (2013) 325 (10 pages); DOI: 10.1007/s11883-013-0325-9.10.1007/s11883-013-0325-9363111723526298
  25. 25. M. Lukasova, J. Hanson, S. Tunaru and S. Offermanns, Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potential, Trends Pharmacol. Sci. 32 (2011) 700-707; DOI: 10.1016/j.tips.2011.08.002.10.1016/j.tips.2011.08.00221944259
  26. 26. L-H. Zhang, V. S. Kamanna, M. C. Zhang and M. L. Kashyap, Niacin inhibits surface expression of ATP synthase b chain in HepG2 cells: implications for raising HDL, J. Lipid Res. 49 (2008) 1195-1201; DOI: 10.1194/jlr.M700426-JLR200.10.1194/jlr.M700426-JLR20018316796
  27. 27. S. H. Ganji, S. Tavintharan, D. Zhu, Y. Xing, V. S. Kamanna and M. L. Kashyap, Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells, J. Lipid Res. 45 (2004) 1835-1845; DOI: 10.1194/jlr.M300403-JLR200.10.1194/jlr.M300403-JLR20015258194
  28. 28. B. J. Wu, L. Yan, F. Charlton, P. Witting, P. J. Barter and K. A. Rye, Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 968-975; DOI: 10.1161/ATVBAHA.109.201129.10.1161/ATVBAHA.109.20112920167660
  29. 29. J. E. Digby, E. McNeill, O. J. Dyar, V. Lam, D. R. Greaves and R. P. Choudhury, Anti-inflammatory effects of nicotinic acid in adipocytes demonstrated by suppression of fractalkine, rantes, and mcp-1 and upregulation of adiponectin, Atherosclerosis 209 (2010) 89-95; DOI: 10.1016/j.atherosclerosis.2009.08.045.10.1016/j.atherosclerosis.2009.08.045283907519781706
  30. 30. J. E. Digby, F. Martinez, A. Jefferson, N. Ruparelia, J. Chai, M. Wamil, D. R. Graves and R. P. Choudhury, Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms, Arterioscl. Thromb. Vas. Biol. 32 (2012) 669-676; DOI: 10.1161/ ATVBAHA.111.241836.10.1161/ATVBAHA.111.241836339259822267479
  31. 31. D. H. Endemann and E. L. Schiffrin, Endothelial dysfunction, J. Am. Soc. Nephrol. 15 (2004) 1983-1992; DOI: 10.1097/01.ASN.0000132474.50966.DA.10.1097/01.ASN.0000132474.50966.DA15284284
  32. 32. H. N. Siti, Y. Kamisah and J. Kamsiah, The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review), Vascul. Pharmacol. 71 (2015) 40-56; DOI: 10.1016/j. vph.2015.03.005.
  33. 33. B. Chen, Y. Lu, Y. Chen and J. Cheng, The role of Nrf2 in oxidative stress-induced endothelial injuries, J. Endocrinol. 225 (2015) R83-R99; DOI: 10.1530/JOE-14-0662.10.1530/JOE-14-066225918130
  34. 34. S. H. Ganji, S. Qin, L. Zhang, V. S. Kamanna and M. L. Kashyap, Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells, Atherosclerosis 202 (2009) 68-75; DOI: 10.1016/j.atherosclerosis.2008.04.044.10.1016/j.atherosclerosis.2008.04.04418550065
  35. 35. S. Tavintharan, S. C. Lim and C. F. Sum, Effects of niacin on cell adhesion and early atherogenesis: biochemical and functional findings in endothelial cells, Basic Clin. Pharmacol. Toxicol. 104 (2009) 206-210; DOI: 10.1111/j.1742-7843.2008.00364.x.10.1111/j.1742-7843.2008.00364.x19159436
  36. 36. E. P. Plaisance, M. Lukasova, S. Offermanns, Y. Zhang, G. Cao and R. L. Judd, Niacin stimulates adiponectin secretion through the GPR109A receptor, Am. J. Physiol. Endocrinol. Metab. 296 (2009) E549-E558; DOI: 10.1152/ajpendo.91004.2008.10.1152/ajpendo.91004.200819141678
  37. 37. M. Iantorno, U. Campia, N. Di Daniele, S. Nistico, G. B. Forleo, C. Cardillo and M. Tesauro, Obesity, inflammation and endothelial dysfunction, J. Biol. Regul. Homeost. Agents 28 (2014) 169-176.
  38. 38. A. Warnholtz, P. Wild, M. A. Ostad, V. Elsner, F. Stieber, R. Schinzel, U. Walter, D. Peetz, K. Lackner, S. Blankenberg and T. Munzel, Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study, Atherosclerosis 204 (2009) 216-221; DOI: 10.1016/j.atherosclerosis.2008.08.003.10.1016/j.atherosclerosis.2008.08.00318822413
  39. 39. S. Sahebkar, Effect of niacin on endothelial function: A systematic review and meta-analysis of randomized controlled trials, Vasc. Med. 19 (2014) 54-66; DOI: 10.1177/1358863X13515766.10.1177/1358863X1351576624391126
  40. 40. S. Westphal, K. Borucki, C. Luley, J. Martens-Lobenhoffer and S. M. Bode-Böger, Treatment with niacin lowers ADMA, Atherosclerosis 184 (2006) 448-450; DOI: 10.1016/j.atherosclerosis.2005.11.018.10.1016/j.atherosclerosis.2005.11.01816376893
  41. 41. B. J. Wu, K. Chen, P. J. Barter and K. A. Rye, Niacin inhibits vascular inflammation via the induction of heme oxygenase-1, Circulation 125 (2012) 150-158; DOI: 10.1161/CIRCULATIONAHA.111.053108.10.1161/CIRCULATIONAHA.111.05310822095827
  42. 42. K. H. Cho, H. J. Kim, B. Rodriguez-Iturbe and N. D. Vaziri, Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure, Am. J. Physiol. Renal Physiol. 297 (2009) F106-F113; DOI: 10.1152/ajprenal.00126.2009.10.1152/ajprenal.00126.200919420110
  43. 43. A. El Atrash, L. Dawood, E. Tousson and A. Salama, Neuroprotective role of vitamin B3 in experimentally induced oxidative stress, Int. J. Clin. Exp. Neurol. 3 (2015) 21-25; DOI: 10.12691/ijcen-3-1-4.
  44. 44. S. Hamoud, M. Kaplan, E. Meilin, A. Hassan, R. Torgovicky, R. Cohen and T. Hayek, Niacin administration significantly reduces oxidative stress in patients with hypercholesterolemia and low levels of high-density lipoprotein cholesterol, Am. J. Med. Sci. 345 (2013) 195-199; DOI: 10.1097/ MAJ.0b013e3182548c28.10.1097/MAJ.0b013e3182548c2822990043
  45. 45. A. Kei, C. Tellis, E. Liberopoulos, A. Tselepis and M. Elisaf, Effect of switch to the highest dose of rosuvastatin versus add-on-statin fenofibrate versus add-on-statin nicotinic acid/laropiprant on oxidative stress markers in patients with mixed dyslipidemia, Cardiovasc. Ther. 32 (2014) 139-146; DOI: 10.1111/1755-5922.12072.10.1111/1755-5922.1207224618208
  46. 46. M Lukasova, C. Malaval, A. Gille, J. Kero and S. Offermanns, Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells, J. Clin. Invest. 121 (2011) 1163-1173; DOI: 10.1172/JCI41651.10.1172/JCI41651304885421317532
  47. 47. W. Y. Kwon, G. J. Suh, K. S. Kim and Y. H. Kwak, Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-kB pathway, Crit. Care Med. 39 (2011) 328-334; DOI: 10.1097/CCM.0b013e3181feeae4.10.1097/CCM.0b013e3181feeae420975550
  48. 48. Y. Si, Y. Zhang, J. Zhao, S. Guo, L. Zhai, S. Yao, H. Sang, N. Yang, G. Song, J. Gu and S. Qin, Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-kB signaling pathway, Mediators Inflamm. 2014 (2014) article ID 263786 (12 pages); DOI: 10.1155/2014/263786.10.1155/2014/263786405849524991087
  49. 49. J. T. Kuvin, D. M. Dave, K. A. Sliney, P. Mooney, A. R. Patel, C. D. Kimmelstiel and R. H. Karas, Effects of extended release niacin on lipoprotein particle size, distribution, an inflammatory markers in patients with coronary artery disease, Am. J. Cardiol. 98 (2006) 743-745; DOI:10.1016/j. amjcard.2006.04.011.
  50. 50. M. Thoenes, A. Oguchi, S. Nagamia, C. S. Vaccari, R. Hammoud, G. E. Umpierrez and B. V. Khan, The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome, Int. J. Clin. Pract. 61 (2007) 1942-1948; DOI: 10.1111/j.1742-1241.2007.01597.x.10.1111/j.1742-1241.2007.01597.x17935553
  51. 51. P. M. Ridker, M. J. Stampfer and N. Rifai, Novel risk factors for systemic atherosclerosis. A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease, JAMA 285 (2001) 2481-2485; DOI: 10.1001/ jama.285.19.2481.10.1001/jama.285.19.248111368701
  52. 52. N. Singh, A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, J. R. Lee, S. Offermanns and V. Ganapathy, Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40 (2014) 128-139; DOI: 10.1016/j.immuni.2013.12.007.10.1016/j.immuni.2013.12.007430527424412617
  53. 53. J. O. Johansson, N. Egberg, A. Asplund-Carlson and L. A. Carlson, Nicotinic acid treatment shifts the fibrinolytic balance favourably and decreases plasma fibrinogen in hypertriglyceridaemic men, J. Cardiovasc. Risk 4 (1997) 165-171; DOI: 10.1177/174182679700400302.10.1177/174182679700400302
  54. 54. S. Tavintharan, M. Sivakumar, S. C. Lim and C. F. Sum, Niacin affects cell adhesion molecules and plasminogen activator inhibitor-1 in HepG2 cells, Clin. Chim. Acta 376 (2007) 41-44; DOI: 10.1016/j. cca.2006.07.009.
  55. 55. R. S. Rosenson, Antiatherothrombotic effects of nicotinic acid, Atherosclerosis 171 (2003) 87-96; DOI: 10.1016/j.atherosclerosis.2003.07.003.10.1016/j.atherosclerosis.2003.07.00314642410
  56. 56. G. Lowe, A. Rumley, J. Norrie, I. Ford, J. Shepherd, S. Cobbe, P. Macfarlane and C. Packard, Blood rheology, cardiovascular risk factors, and cardiovascular disease: the West of Scotland Coronary Prevention Study, Thromb. Haemost. 84 (2000) 553-558. Erratum in: Thromb. Haemost. 85 (2001) 946.
  57. 57. L. Wilhelmsen, K. Svärdsudd, K. Korsan-Bengtsen, B. Larsson, L. Welin and G. Tibblin, Fibrinogen as a risk factor for stroke and myocardial infarction, N. Engl. J. Med. 311 (1984) 501-505; DOI: 10.1056/NEJM198408233110804.10.1056/NEJM1984082331108046749207
  58. 58. W. B. Kannel, P. A. Wolf, W. P. Castelli and R. B. D‘Agostino, Fibrinogen and risk of cardiovascular disease. The Framingham Study, JAMA 258 (1987) 1183-1186; DOI:10.1001/jama.1987.03400090067035.10.1001/jama.1987.03400090067035
  59. 59. J. Ma, C. H. Hennekens, P. M. Ridker and M. J. Stampfer, A prospective study of fibrinogen and risk of myocardial infarction in the physicians‘ health study, J. Am. Coll. Cardiol. 33 (1999) 1347-1352; DOI:10.1016/S0735-1097(99)00007-8.10.1016/S0735-1097(99)00007-8
  60. 60. P. Y. Scarabin, D. Arveiler, P. Amouyel, C. Dos Santos, A. Evans, G. Luc, J. Ferrières and I. Juhan- Vague, Prospective epidemiological study of myocardial infarction. Plasma fibrinogen explains much of the difference in risk of coronary heart disease between France and Northern Ireland. The PRIME study, Atherosclerosis 166 (2003) 103-109; DOI: 10.1016/S0021-9150(02)00309-X.10.1016/S0021-9150(02)00309-X
  61. 61. A. Kei and M. Elisaf, Nicotinic acid/laropiprant reduces platelet count but increases mean platelet volume in patiens with primary dyslipidemia, Arch. Med. Sci. 3 (2014) 439-444; DOI: 10.5114/ aoms.2014.43738.10.5114/aoms.2014.43738410725025097572
  62. 62. K. Stach, F. Zaddach, X. D. Nguyen, E. Elmas, S. Kralev, C. Weiß, M. Borggrefe and T. Kälsch, Effects of nicotinic acid on endothelial cells and platelets, Cardiovasc. Pathol. 21 (2012) 89-95; DOI: 10.1016/j.carpath.2011.04.002.10.1016/j.carpath.2011.04.00221632263
  63. 63. A. M. Gotto and H. Pownall, Manual of Lipid Disorders, 3rd ed., Lippincott Williams & Wilkins, Philadelphia 2003.
  64. 64. L. A. Carlson, Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review, J. Intern. Med. 258 (2005) 94-114; DOI: 10.1111/j.1365-2796.2005.01528.x.10.1111/j.1365-2796.2005.01528.x16018787
  65. 65. [The Emerging Risk Factors Collaboration] S. Erqou, S. Kaptoge, P. L. Perry, E. A. Di Angelantonio, I. R. Thompson, S. M. White, R. Marcovina, R. Collins, S. G. Thompson and J. Danesh, Lipoprotein(a) concentration and the risk of coronary heart disease, stroke and nonvascular mortality, JAMA 302 (2009) 412-423; DOI: 10.1001/jama.2009.1063.10.1001/jama.2009.1063327239019622820
  66. 66. M. L. Koschinsky and S. M. Marcovina, Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity, Curr. Opin. Lipidol. 15 (2004) 167-167; DOI: 10.1097/01.mol.0000124528.75650.be.
  67. 67. S. Tsimikas, L. D. Tsironis and A. D. Tselepis, New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease, Arterioscler. Thromb. Vasc. Biol. 27 (2007) 2094-2099; DOI: 10.1161/01.ATV.0000280571.28102.d4..
  68. 68. S. Tsimikas, J. Willeit, M. Knoflach, M. Mayr, G. Egger, M. Notdurfter, J. L. Witztum, C. J. Wiedermann, Q. Xu and S. Kiechl, Lipoprotein-associated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: results from the Bruneck study, Eur. Heart J. 30 (2009) 107-115; DOI: 10.1093/eurheartj/ehn502.10.1093/eurheartj/ehn50219019993
  69. 69. V. Serebruany, A. Malinin, D. Aradi, W. Kuliczkowski, N. B. Norgard and W. E. Boden, The in vitro effects of niacin on platelet biomarkers in human volunteers, Thromb. Haemost. 104 (2010) 311-317; DOI: 10.1160/TH10-01-0015.10.1160/TH10-01-001520539903
  70. 70. M. Liu and F. Liu, Transcriptional and post-translational regulation of adiponectin, Biochem. J. 425 (2009) 41-52; DOI: 10.1042/BJ20091045.10.1042/BJ2009104520001961
  71. 71. H. Kobayashi, N. Ouchi, S. Kihara, K. Walsh, M. Kumada, Y. Abe, T. Funahashi and Y. Matsuzawa, Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin, Circ. Res. 94 (2004) e27-e31; DOI: 10.1161/01.RES.0000119921.86460.37.10.1161/01.RES.0000119921.86460.37437447914752031
  72. 72. M. Kumada, S. Kihara, S. Sumitsuji, T. Kawamoto, S. Matsumoto, N. Ouchi, Y. Arita, Y. Okamoto, I. Shimomura, H. Hiraoka, T. Nakamura, T. Funahashi, Y. Matsuzawa and Osaka CAD Study Group. Coronary artery disease, Association of hypoadiponectinemia with coronary artery disease in men, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 85-89; DOI: 10.1161/01.ATV.0000048856.22331.50.10.1161/01.ATV.0000048856.22331.50
  73. 73. F. Otsuka, S. Sugiyama, S. Kojima, H. Maruyoshi, T. Funahashi, K. Matsui, T. Sakamoto, M. Yoshimura, K. Kimura, S. Umemura and H. Ogawa, Plasma adiponectin levels are associated with coronary lesion complexity in men with coronary artery disease, J. Am. Coll. Cardiol. 48 (2006) 1155-1162; DOI: 10.1016/j.jacc.2006.05.054.10.1016/j.jacc.2006.05.05416978998
  74. 74. T. Pischon, C. J. Girman, G. S. Hotamisligil, N. Rifai, F. B. Hu and E. B. Rimm, Plasma adiponectin levels and risk of myocardial infarction in men, JAMA 291 (2004) 1730-1737; DOI: 10.1001/ jama.291.14.1730.10.1001/jama.291.14.173015082700
  75. 75. W. Koenig, N. Khuseinova, J. Baumert, C. Meisinger and H. Löwel, Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany, J. Am. Coll. Cardiol. 48 (2006) 1369-1377; DOI: 10.1016/j.jacc.2006.06.053.10.1016/j.jacc.2006.06.05317010797
  76. 76. C. Kistorp, J. Faber, S. Galatius, F. Gustafsson, J. Frystyk, A. Flyvbjerg and P. Hildebrandt, Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure, Circulation 112 (2005) 1756-1762; DOI: 10.1161/CIRCULATIONAHA.104.530972.10.1161/CIRCULATIONAHA.104.53097216157772
  77. 77. T. Nakamura, H. Funayama, N. Kubo, T. Yasu, M. Kawakami, M. Saito, S. Momomura and S. E. Ishikawa, Association of hyperadiponectinemia with severity of ventricular dysfunction in congestive heart failure, Circ. J. 70 (2006) 1557-1562; DOI: 10.1253/circj.70.1557.10.1253/circj.70.155717127799
  78. 78. T. Tamura, Y. Furukawa, R. Taniguchi, Y. Sato, K. Ono, H. Horiuchi, Y. Nakagawa, T. Kita and T. Kimura, Serum adiponectin level as an independent predictor of mortality in patients with congestive heart failure, Circ. J. 71 (2007) 623-630; DOI: 10.1253/circj.71.623.10.1253/circj.71.62317456982
  79. 79. L. Chen, W. Y. So, S. Y. Li, Q. Cheng, B. J. Boucher and P. S. Leung, Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets, Mol. Cell. Endocrinol. 404 (2015) 56-66; DOI: 10.1016/j.mce.2015.01.029. 10.1016/j.mce.2015.01.02925622782
  80. 80. T. E. Graham, Q. Yang, M. Blüher, A. Hammarstedt, T. P. Ciaraldi, R. R. Henry, C. J. Wason, A. Oberbach, P. A. Jansson, U. Smith and B. B. Kahn, Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects, N. Engl. J. Med. 354 (2006) 2552-2563; DOI: 10.1056/NEJMoa054862.10.1056/NEJMoa05486216775236
  81. 81. Q. Yang, T. E. Graham, N. Mody, F. Preitner, O. D. Peroni, J. M. Zabolotny, K. Kotani, L. Quadro and B. B. Kahn, Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes, Nature 436 (2005) 356-362; DOI: 10.1038/nature03711.10.1038/nature0371116034410
  82. 82. V. C. Luft, M. Pereira, J. S. Pankow, C. Ballantyne, D. Couper, G. Heiss and B. B. Duncan, Retinol binding protein 4 and incident diabetes - the Atherosclerosis Risk in Communities Study (ARIC Study), Rev. Bras. Epidemiol. 16 (2013) 388-397; DOI: 10.1590/S1415-790X2013000200014.10.1590/S1415-790X2013000200014492999624142010
  83. 83. B. Vergès, B. Guiu, J. P. Cercueil, L. Duvillard, I. Robin, P. Buffier, B. Bouillet, S. Aho, M. C. Brindisi and J. M. Petit, Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus, Arterioscler. Thromb. Vasc. Biol. 32 (2012) 3050-3057; DOI: 10.1161/ATVBAHA.112.255190.10.1161/ATVBAHA.112.25519023087360
  84. 84. D. Wanders, Novel Pleiotropic Effects of Niacin, Ph. D. Thesis, Auburn University, Auburn (AL, USA) 2012.
  85. 85. M. M. Heemskerk, H. K. Dharuri, S. A. van den Berg, H. S. Jónasdóttir, D. P. Kloos, M. Giera, K. W. van Dijk and V. van Harmelen, Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile, J. Lipid Res. 55 (2014) 2532-2540; DOI: 10.1194/jlr.M051938.10.1194/jlr.M051938424244625320342
  86. 86. R. Fischer, A. Konkel, H. Mehling, K. Blossey, A. Gapelyuk, N. Wessel, C. von Schacky, R. Dechend, D. N. Muller, M. Rothe, F. C. Luft, K. Weylandt and W. H. Schunck, Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway, J. Lipid Res. 55 (2014) 1150-1164; DOI: 10.1194/jlr.M047357.10.1194/jlr.M047357403194624634501
  87. 87. S. H. Ganji, G. D. Kukes, N. Lambrecht, M. L. Kashyap and V. S. Kamanna, Therapeutic role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease, Am. J. Physiol. Gastrointest. Liver Physiol. 306 (2014) G320-G327; DOI: 10.1152/ajpgi.00181.2013.10.1152/ajpgi.00181.201324356885
  88. 88. M. Hara, M. Kurano, K. Tsuneyama, K. Kikuchi, A. Takai, T. Matsushima and K. Tsukamoto, Nicotinic acid prevents and restores steatohepatitis together with amelioration of postprandial dyslipidemia, Arterioscler. Thromb. Vasc. Biol. 34 (2014) A601. American Heart Association (AHA) Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) 2014 Spring Conference, Toronto, Canada, May 1-3, 2014.
  89. 89. T. H. Grahn, R. Kaur, J. Yin, M. Schweiger, V. M. Sharma, M. J. Lee, Y. Ido, C. M. Smas, R. Zechner, A. Lass and V. Puri, Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes, J. Biol. Chem. 289 (2014) 12029-12039; DOI: 10.1074/jbc.M113.539890.10.1074/jbc.M113.539890400210924627478
  90. 90. E. Fabbrini, B. S. Mohammed, K. M. Korenblat, F. Magkos, J. McCrea, B. W. Patterson and S. Klein, Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease, J. Clin. Endocrinol. Metab. 95 (2010) 2727-2735; DOI: 10.1210/jc.2009-2622.10.1210/jc.2009-2622290207620371660
  91. 91. M. Hu, W. C. Chu, S. Yamashita, D. K. Yeung, L. Shi, D. Wang, D. Masuda, Y. Yang and B. Tomlinson, Liver fat reduction with niacin is influenced by DGAT-2 polymorphisms in hypertriglyceridemic patients, J. Lipid Res. 53 (2012) 802-809; DOI: 10.1194/jlr.P023614.10.1194/jlr.P023614330765722315393
  92. 92. R. N. Foley, P. S. Parfrey and M. J. Sarnak, Epidemiology of cardiovascular disease in chronic renal disease, J. Am. Soc. Nephrol. 9 (Suppl. 12) (1998) S16-S23.
  93. 93. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch and C. Y. Hsu, Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization, N. Engl. J. Med. 351 (2004) 1296-1305; DOI: 10.1056/NEJMoa041031. 10.1056/NEJMoa04103115385656
  94. 94. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth, J. Coresh, B. Culleton, L. L. Hamm, P. A. McCullough, B. L. Kasiske, E. Kelepouris, M. J. Klag, P. Parfrey, M. Pfeffer, L. Raij, D. J. Spinosa and P. W. Wilson, Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention, Circulation 108 (2003) 2154–2169; DOI: 10.1161/01.CIR.0000095676.90936.80.10.1161/01.CIR.0000095676.90936.8014581387
  95. 95. J. Omran, A. Al-Dadah and K. C. Dellsperger, Dyslipidemia in patients with chronic and endstage kidney disease, Cardiorenal Med. 3 (2013) 165–177; DOI: 10.1159/000351985. 10.1159/000351985388419024454313
  96. 96. N. D. Vaziri, Causes of dysregulation of lipid metabolism in chronic renal failure, Semin. Dial. 22 (2009) 644–651; DOI: 10.1111/j.1525-139X.2009.00661.x.10.1111/j.1525-139X.2009.00661.x287432320017835
  97. 97. V. Tsimihodimos, Z. Mitrogianni and M. Elisaf, Dyslipidemia associated with chronic kidney disease, Open Cardiovasc. Med. J. 5 (2011) 41–48.10.2174/1874192401105010041310635721643500
  98. 98. E. A. Friedman, Consequences and management of hyperphosphatemia in patients with renal insufficiency, Kidney Int. Suppl. 95 (2005) S1-S7; DOI: 10.1111/j.1523-1755.2005.09500.x.10.1111/j.1523-1755.2005.09500.x15882307
  99. 99. M. Tonelli, N. Pannu and B. Manns, Oral phosphate binders in patients with kidney failure, N. Engl. J. Med. 362 (2010) 1312–1324; DOI: 10.1056/NEJMra0912522.10.1056/NEJMra091252220375408
  100. 100. H. J. Kang, D. Y. Kim, S. M. Lee, K. H. Kim, S. H. Han, H. K. Nam, K. H. Kim, S. E. Kim, Y. K. Son and W. S. An, Effect of low-dose niacin on dyslipidemia, serum phosphorus levels and adverse effects in patients with chronic kidney disease, Kidney Res. Clin. Pract. 32 (2013) 21–26; DOI: 10.1016/j.krcp.2012.12.001.10.1016/j.krcp.2012.12.001471610826889433
  101. 101. D. Maccubbin, D. Tipping, O. Kuznetsova, W. A. Hanlon and A. G. Bostom, Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial, Clin. J. Am. Soc. Nephrol. 5 (2010) 582–589; DOI: 10.2215/CJN.07341009.10.2215/CJN.07341009284970020299362
  102. 102. P. Aramwit, R. Srisawadwong and O. Supasyndh, Effectiveness and safety of extended-release nicotinic acid for reducing serum phosphorus in hemodialysis patients, J. Nephrol. 25 (2012) 354–362; DOI: 10.5301/jn.5000011.10.5301/jn.500001121748722
  103. 103. K. Kitai, H. Tanaka, S. Tatsymi, Y. Fukunaga, K. Genjida, K. Morita, N. Kuboyama, T. Suzuki, T. Akita, K. Miyamoto and E. Takeda, Nicontinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine, Nephrol. Dial. Transplant. 14 (1999) 1195–1201; DOI: 10.1093/ndt/14.5.1195.10.1093/ndt/14.5.119510344361
  104. 104. S. Shin and S. Lee, Niacin as a drug repositioning candidate for hyperphosphatemia management in dialysis patients, Ther. Clin. Risk Manag. 10 (2014) 875–883; DOI: 10.2147/TCRM.S71559.10.2147/TCRM.S71559
  105. 105. M. H. Ahmed, Niacin as potential treatment for dyslipidemia and hyperphosphatemia associated with chronic renal failure: the need for clinical trials, Renal Failure. 32 (2010) 642–646; DOI: 10.3109/08860221003753323.10.3109/08860221003753323
  106. 106. E. Streja, C. P. Kovesdy, D. A. Streja, H. Moradi, K. Kalantar-Zadeh and M. L. Kashyap, Niacin and progression of CKD, Am. J. Kidney Dis. 65 (2015) 785–798; DOI: 10.1053/j.ajkd.2014.11.033.10.1053/j.ajkd.2014.11.033
  107. 107. M. Al-Hijji, S. S. Martin, P. H. Joshi and S. R. Jones, Effect of equivalent on-treatment apolipoprotein levels on outcomes (from the AIM-HIGH and HPS2-THRIVE), Am. J. Cardiol. 112 (2013) 1697–1700; DOI: 10.1016/j.amjcard.2013.07.030.10.1016/j.amjcard.2013.07.030
  108. 108. A. Owada, S. Suda and T. Hata, Antiproteinuric effect of niceritrol, a nicotinic acid derivative, in chronic renal disease with hyperlipidemia: a randomized trial, Am. J. Med. 114 (2003) 347–353; DOI: 10.1016/S0002-9343(02)01567-X.10.1016/S0002-9343(02)01567-X
  109. 109. H. Goel and R. L. Dunbar, Niacin alternatives for dyslipidemia: Fool’s gold or gold mine? Part II: Novel niacin mimetics, Curr. Atheroscler. Rep. 18 (2016) article 17 (13 pages); DOI: 10.1007/s11883-016-0570-9.10.1007/s11883-016-0570-9477347426932224
  110. 110. R. S. Birjmohun, B. A. Hutten, J. J. P. Kastelein and E. S. G. Stroes, Efficacy and safety of highdensity lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials, J. Am. Coll. Cardiol. 45 (2005) 185–197; DOI: 10.1016/j.jacc.2004.10.031.10.1016/j.jacc.2004.10.03115653014
  111. 111. J. Hanson, A. Gille, S. Zwykiel, M. Lukasova, B. E. Clausen, K. Ahmed, S. Tunaru, A. Wirth and S. Offermanns, Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice, J. Clin. Invest. 120 (2010) 2910-2919; DOI: 10.1172/JCI42273.10.1172/JCI42273291219420664170
  112. 112. R. H. Stern, J. D. Spence, D. J. Freeman and A. Parbtani, Tolerance to nicotinic acid flushing, Clin. Pharmacol. Ther. 50 (1991) 66-70; DOI: 10.1038/clpt.1991.104.10.1038/clpt.1991.1041855354
  113. 113. S. Andersson, L. A. Carlson, L. Orö and E. A. Richards, Effect of nicotinic acid on gastric secretion of acid in human subjects and in dogs, Scand. J. Gastroenterol. 6 (1971) 555-559; DOI: 10.3109/00365527109179938.10.3109/003655271091799385139111
  114. 114. J. McKenney, New perspectives on the use of niacin in the treatment of lipid disorders, Arch. Intern. Med. 164 (2004) 697-705; DOI: 10.1001/archinte.164.7.697.10.1001/archinte.164.7.697
  115. 115. S. S. Bhardwaj and N. Chalasani, Lipid-lowering agents that cause drug-induced hepatotoxicity, Clin. Liver Dis. 11 (2007) 597-613; DOI: 10.1016/j.cld.2007.06.010.10.1016/j.cld.2007.06.010
  116. 116. J. R. Guyton and H. E. Bays, Safety considerations with niacin therapy, Am. J. Cardiol. 99 (6, Suppl. 1) (2007) S22-S31; DOI: 10.1016/j.amjcard.2006.11.018.10.1016/j.amjcard.2006.11.018
  117. 117. J. R. Guyton, S. Fazio, A. J. Adewale, E. Jensen, J. E. Tomassini, A. Shah and A. M. Tershakovec, Effect of extended-release niacin on new-onset diabetes among hyperlipidemic patients treated with ezetimibe/simvastatin in a randomized controlled trial, Diabetes Care 35 (2012) 857-860; DOI: 10.2337/dc11-1369.10.2337/dc11-1369
  118. 118. A. M. Poynten, S. K. Gan, A. D. Kriketos, A. O’Sullivan, J. J. Kelly, B. A. Ellis, D. J. Chisholm and L. V. Campbell, Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content, Metabolism 52 (2003) 699-704; DOI: 10.1016/ S0026-0495(03)00030-1.10.1016/S0026-0495(03)00030-1
  119. 119. L. A. Carlson and L.Oro, The effect of nicotinic acid on the plasma free fatty acid; demonstration of a metabolic type of sympathicolysis, Acta Med. Scand. 172 (1962) 641-645; DOI: 10.1111/j.0954-6820.1962.tb07203.x.10.1111/j.0954-6820.1962.tb07203.x14018702
  120. 120. M. M. Heemskerk, S. A. A. van den Berg, A. C. M. Pronk, J.-B. van Klinken, M. R. Boon, L. M. Havekes, P. C. N. Rensen, K. W. van Dijk and V. van Harmelen, Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3B, Am. J. Physiol. Endocrinol. Metabol. 306 (2014) E808-E813; DOI:10.1152/ ajpendo.00641.2013.
  121. 121. L. Chen, W. Y. So, S. Y. T. Li, Q. Cheng, B. J. Boucher and P. S. Leung, Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets, Mol. Cell. Endocrinol. 404 (2015) 56-66; DOI: 10.1016/j.mce.2015.01.029.10.1016/j.mce.2015.01.02925622782
  122. 122. T. P. Wong, L. K. Y. Chan and P. S. Leung, Involvement of the niacin receptor GPR109a in the local control of glucose uptake in small intestine of type 2 diabetic mice, Nutrients 7 (2015) 7543-7561; DOI: 10.3390/nu7095352.10.3390/nu7095352458654726371038
  123. 123. C. Goldie, A. J. Taylor, P. Nguyen, C. McCoy, X.-Q. Zhao and D. Preiss, Niacin therapy and the risk of new-onset diabetes: A meta-analysis of randomised controlled trials, Heart 102 (2016) 198-203; DOI: 10.1136/heartjnl-2015-308055.10.1136/heartjnl-2015-308055475261326370223
  124. 124. P. L. Canner, C. D. Furberg, M. L. Terrin and M. E. McGovern, Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project), Am. J. Cardiol. 95 (2005) 254-257; DOI: 10.1016/j.amjcard.2004.09.013.10.1016/j.amjcard.2004.09.01315642562
  125. 125. S. L.Gershon and I. H. Fox, Pharmacologic effects of nicotinic acid on human purine metabolism, J. Lab. Clin. Med. 84 (1974) 179-186.
  126. 126. Z. N. Gaut, R. Pocelinko, H. M. Solomon and G. B. Thomas, Oral glucose tolerance, plasma insulin, and uric acid excretion in man during chronic administration of nicotinic acid, Metabolism 20 (1971) 1031-1035; DOI: 10.1016/0026-0495(71)90026-6. 10.1016/0026-0495(71)90026-6
  127. 127. D. Domanico, F. Verboschi, S. Altimari, L. Zompatori and E. M. Vingolo, Ocular effects of niacin: A review of the literature, Med. Hypothesis Discov. Innov. Ophthalmol. 4 (2015) 64–71.
  128. 128. H. Stals, C. Vercammen, C. Peeters and M. A. Morren, Acanthosis nigricans caused by nicotinic acid: case report and review of the literature, Dermatology 189 (1994) 203–206; DOI: 10.1159/000246834.10.1159/000246834
  129. 129. A. G. Gharavi, J. A. Diamond, D. A. Smith and R. A. Phillips, Niacin-induced myopathy, Am. J. Cardiol. 74 (1994) 841–842; DOI: 10.1016/0002-9149(94)90453-7.10.1016/0002-9149(94)90453-7
  130. 130. A. Pandian, A. Arora, L. S. Sperlinga and B. V. Khan, Targeting mulitple dyslipidemias with fixed combinations – focus on extended release niacin and simvastatin, Vasc. Health Risk Manag. 4 (2008) 1001–1009; DOI: 10.2147/VHRM.S3460.10.2147/VHRM.S3460260534219183748
DOI: https://doi.org/10.1515/acph-2016-0043 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 449 - 469
Accepted on: Jun 2, 2016
|
Published on: Oct 15, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Miroslav Zeman, Marek Vecka, František Perlík, Barbora Staňková, Robert Hromádka, Eva Tvrzická, Jakub Širc, Jakub Hrib, Aleš Žák, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.