Have a personal or library account? Click to login
Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients Cover

Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients

Open Access
|Jun 2016

References

  1. 1. B. B. Sheth, F. J. Bandelin, and R. F. Shangraw, Tablets, in Pharmaceutical Dosage Forms (Eds. H. A. Lieberman and L. Lachman), 1st ed., Marcel Dekker, New York 1980, pp. 109-185.
  2. 2. P. Davies, Oral Solid Dosage Forms, in Pharmaceutical Preformulation and Formulation (Ed. M. Gibson), 2nd ed., Informa Healthcare, Inc., New York 2009, pp. 367-430.
  3. 3. R. J. Roberts, Particulate Analysis: Mechanical properties, in Solid State Characterization of Pharmaceuticals (Eds. R. A. Storey and I. Ymen), 1st ed., John Wiley & Sons, Southern Gate UK 2011, pp. 357-369.10.1002/9780470656792.ch10
  4. 4. J. Nordstrom, I. Klevan and G. Alderborn, A protocol for the classification of powder compression characteristics, Eur. J. Pharm. Biopharm. 80 (2012) 209-216 DOI: 10.1016/j.ejpb.2011.09.006.10.1016/j.ejpb.2011.09.006
  5. 5. G. E. Amidon, P. J. Secreast and D. Mudie, Particle, Powder, and Compact Characterization, in Developing Solid Dosage Forms (Eds. Y. Qiu, Y. Chen and G. G. Z. Zhang), 1st ed., Elsevier, New York 2009, pp. 163-183.10.1016/B978-0-444-53242-8.00008-4
  6. 6. C. Sun and D. J. W. Grant, Influence of crystal structure on the tableting properties of sulfamerazine polymorphs, Pharm. Res. 18 (2001) 274-280; DOI: 0724-8741/01/0300-0274.10.1023/A:1011038526805
  7. 7. S. Jain, Mechanical properties of powders for compaction and tableting: An overview PSST Vol. 2 (1999) 20-31; DOI: 10.1016/S1461-5347(98)00111-4.10.1016/S1461-5347(98)00111-4
  8. 8. D. Singhal and W. Curatolo, Drug polymorphism and dosage form design: a practical perspective, Adv. Drug Deliv. 56 (2004) 335-347; DOI: 10.1016/j.addr.2003.10.008.10.1016/j.addr.2003.10.008
  9. 9. S. F. Chow, M. Chen, L. Shi, A. H. L. Chow and C. C. Sun, Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide, Pharm. Res. 29 (2012) 1854-1865; DOI: 10.1007/s11095-012-0709-5.10.1007/s11095-012-0709-5
  10. 10. A. Paradkar and P. York, Crystal Engineering and Particle Design for the Powder Compaction Process, in Pharmaceutical Powder Compaction Technology (Ed. M. Celik), 2nd ed., Informa Healthcare, London 2011, pp. 235-252.
  11. 11. N. Blagden, M. de Matas, P. T. Gavan and P. York, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Deliv. 59 (2007) 617-630; DOI: 10.1016/j.addr.2007.05.011.10.1016/j.addr.2007.05.011
  12. 12. S. Karki, T. Frišič, L. Fabian, P. R. Laity, G .M. Day and W. Jones, Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol, Adv. Mater. 21 (2009) 3905-3909; DOI: 10.1002/adma.200900533.10.1002/adma.200900533
  13. 13. K. L. Johnson, Contact Mechanics (Ed. K. L. Johnson), 1st ed., Cambridge University Press, Cambridge 1985.
  14. 14. N. E. Dowling, Mechanical Behaviour of Materials (Ed. N. E. Dowling), 1st ed., Prentice-Hall Inc., New Jersey 1993.
  15. 15. K. L. Johnson, The correlation of indentation experiments, J. Mech. Phys. Solids 18 (1970) 115-125; DOI: 10.1016/0022-5096(70)90029-3.10.1016/0022-5096(70)90029-3
  16. 16. R. C. Rowe and R. J. Roberts, Mechanical Properties, in Pharmaceutical Powder Compaction Technology (Eds. G. Alderborn and C. Nystrom), 1st ed., Marcel Dekker Inc, New York 1996, pp. 283-322.10.1201/b14207-12
  17. 17. S. W. Hoag, V. S. Dave and V. Moolcandani, Compression and Compaction, in Pharmaceutical Dosage Forms - Tablets (Eds. L. L. Augsburger and S. W. Hoag), 3rd ed., Taylor & Francis Group, New York 2008, pp. 555-631.
  18. 18. S. Finnie, K. V. R. Prasad, D. B. Sheen and J. N. Sherwood, Microhardness and dislocation identification studies on paracetamol single crystals, Pharm. Res. 18 (2001) 674-681; DOI: 0724-8741/01/0500-0674.10.1023/A:1011093612868
  19. 19. M. Radovic, E. Lara-Curzio and L. Riester, Comparison of different experimental techniques for determination of elastic properties of solids, Materials Sci. Engin. A368 (2004) 56-70; DOI: 10.1016/j. msea.2003.09.080.
  20. 20. R. W. Heckel, An analysis of powder compaction phenomena, Trans. Metall. Soc. AIME 221 (1961a) 1001-1008.
  21. 21. R. W. Heckel, Density-pressure relationships in powder compaction, Trans. Metall. Soc. AIME 221 (1961b) 671-675.
  22. 22. E. E. Walker, The properties of powders VI: The compressibility of powders. Trans. Faraday Soc. 19 (1923) 73-82; DOI: 0.1039/tf9231900073.10.1039/tf9231900073
  23. 23. K. Kawakita and K. H. Ludde, Some consideration on powder compression equations, Powder Technol. 4 (1971) 61-68; DOI: 10.1016/0032-5910(71)80001-3.10.1016/0032-5910(71)80001-3
  24. 24. M. J. Adams, M. A. Mullier and J. P. K. Seville, Agglomerate strength measurement using a uniaxial confined compression test, Powder Technol. 78 (1994) 5-13; DOI: 140.1016/0032-5910(93)02777-8.10.1016/0032-5910(93)02777-8
  25. 25. J. S. Smith, M. D. Wyrick and J. M. Poole, An evaluation of three techniques for determining Young’s modulus of mechanically alloyed materials. Dynamic Elastic Modulus Measurements in Materials, ASTM (1990) 195-206; DOI: 10.1520/STP24625S.10.1520/STP24625S
  26. 26. Standard Test Method for Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Glass and Glass-Ceramics by Resonance, Annual Book of ASTM Standards 15 (2006) 623-692.
  27. 27. N. A. Armstrong and R. F. Haines-Nutt, Elastic recovery and surface area changes in compacted powder systems, J. Pharm. Pharmacol. 24 (1972) 138-136; DOI: 10.1016/0032-5910(74)80054-9.10.1016/0032-5910(74)80054-9
  28. 28. W. C. Duncan-Hewitt and G. C. Weatherly, Evaluating the hardness, Young’s modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques, J. Mater. Sci. 8 (1989) 1350-1352; DOI: 0261-8028/89.
  29. 29. M. Celik, Pharmaceutical Powder Compaction Technology, 2nd ed., Informa Healthcare, New York 2011.
  30. 30. X. Cao and M. A. Morganti, Study of Hiestand’s “Special Case” Pharmaceutical Materials Using AFM Nanoindentation, 2009, AAPS Annual Meeting and Exposition.
  31. 31. D. Olusanmi, K. J. Roberts, M. Ghadiri and Y. Ding, The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: Effect of crystallographic anisotropy, Int. J. Pharm. 411 (2011) 49-63; DOI: 10.1016/j.ijpharm.2011.03.039.10.1016/j.ijpharm.2011.03.03921440610
  32. 32. C. C. Kwan, Y. Q. Chen, Y. L. Ding, D. G. Papadopoulos, A. C. Bentham and M .Ghadiri, Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders, Eur. J. Pharm. Sci. 23 (2004) 327-336; DOI: 10.1016/j.ejps.2004.08.006.10.1016/j.ejps.2004.08.00615567285
  33. 33. M. Meier, E John, D. Wieckhusen, W. Wirth and W. Peukert, Influence of mechanical properties on impact fracture: Prediction of the milling behaviour of pharmaceutical powders by nanoindentation, Powder Technol. 188 (2009) 301-313; DOI: 101016/j.powtec.2008.05.009.
  34. 34. V. M. Masterson and X. Cao, Evaluating particle hardness of pharmaceutical solids using AFM nanoindentation, Int. J. Pharm. 362 (2008) 163-171; DOI: 10.1016/j.ijpharm.2008.06.015.10.1016/j.ijpharm.2008.06.01518621120
  35. 35. A. C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer Verlag, New York 2011.10.1007/978-1-4419-9872-9
  36. 36. X. Liao and T. S. Wiedmann, Measurement of process-dependent material properties of pharmaceutical solids by nNanoindentation, J. Pharm. Sci. 94 (2004) 79-92; DOI: 10.1002/jps.20227.10.1002/jps.2022715761932
  37. 37. S. Varughese, M. S. R. N. Kiran, K. A. Solanko, A. D. Bond, U. Ramamurty and G. R. Desiraju, Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation, Chem. Sci. 2 (2011) 2236-2242; DOI: 10.1039/c1sc00430a.10.1039/c1sc00430a
  38. 38. S. R. Cohen and E. Kalfon-Cohen, Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review, Beilstein J. Nanotechnol. 4 (2013) 815-833; DOI: 10.3762/ bjnano.4.93.10.3762/bjnano.4.93386924624367751
  39. 39. E. H. H. Chow, D. K. Bučar and W. Jones, New opportunities in crystal engineering: The role of atomic force microscopy in studies of molecular crystals, Chem. Comm. 48 (2012) 9210-9226; DOI: 10.1039/c2cc32678g.10.1039/c2cc32678g22822481
  40. 40. E. V. Boldyreva, High-pressure diffraction studies of molecular organic solids. A personal view, Acta Cryst. A64 (2008) 218-231; DOI: 10.1107/S0108767307065786.10.1107/S010876730706578618156687
  41. 41. F. P. A. Fabbiani and C. R. Pulham, High-pressure studies of pharmaceutical compounds and energetic materials, Chem. Soc. Rev. 35 (2006) 932-942; DOI: 10.1039/B517780B.10.1039/b517780b17003899
  42. 42. T. P. Shakhtshneider, E. V. Boldyreva, M. A. Vasilchenko, H. Ahsbahs and H. Uchtmann, Anisotropy of crystal structure distortion in organic molecular crystals of drugs induced by hydrostatic compression, J. Struct. Chem. 40 (1999) 892-898; DOI: 0022-4766/99/4006-0892.10.1007/BF02700697
  43. 43. E. V. Boldyreva, T. P. Shakhtshneider, M. A. Vasilchenko, H. Ahsbahs and H. Uchtmann, Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressure, Acta Cryst. B56 (2000) 299-309; DOI: 10.1107/s0108768199013634.10.1107/S010876819901363410794283
  44. 44. T. Beyer, G. M. Day and S. L. Price, The prediction, morphology, and mechanical properties of the polymorphs of paracetamol, J. Am. Chem. Soc. 123 (2001) 5086-5094; DOI: 10.1021/ja0102787.10.1021/ja010278711457339
  45. 45. M. H. Shariare, F. J. J. Leusen, M. De Matas, P. York and J. Anwar, Prediction of the mechanical behavior of crystalline solids, Pharm. Res. 29 (2012) 319-331; DOI: 10.1007/s11095-011-0543-1.10.1007/s11095-011-0543-1
  46. 46. C. C. Sun and Y. H. Kiang, On the identification of slip planes in organic crystals based on attachment energy calculation, J. Pharm. Sci. 97 (2007) 3456-3461; DOI: 10.1002/jps.21234.10.1002/jps.21234
  47. 47. M. J. Turner, S. P. Thomas, M. W. S. D. Jayatilaka and M. A. Spackman, Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals, Chem. Commun. 51 (2015) 3735-3738; DOI: 10.1039/c4cc09074h.10.1039/C4CC09074H
  48. 48. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation measurements, J. Mater. Res. 7 (1992) 1564-1583; DOI: 10.1557/JMR.1992.1564.10.1557/JMR.1992.1564
  49. 49. W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20; DOI: 10.1557/jmr.2004.0002. 10.1557/jmr.2004.0002
  50. 50. C. M. Reddy, G. R. Krishna and S. Ghosh, Mechanical properties of molecular crystals: Applications to crystal engineering, Cryst. Eng. Comm. 12 (2010) 2296-2314; DOI: 10.1039/c003466e.10.1039/c003466e
  51. 51. U. Ramamurty and J. Jang, Nanoindentation for probing the mechanical behavior of molecular crystals: A review of the technique and how to use it, Cryst. Engin. Comm. 16 (2014) 12-23; DOI: 10.1039/c3ce41266k.10.1039/C3CE41266K
  52. 52. D. A. Lucca, K. Herrmann and M. J. Klopfstein, Nanoindentation: Measuring methods and applications, Manuf. Tech. 59 (2010) 803-819; DOI: 10.1016/j.cirp.2010.05.009.10.1016/j.cirp.2010.05.009
  53. 53. http://www.csm-instruments.com/ Why is Nanoindentation more quantitative than AFM for measurement of surface mechanical properties?; access date January 25, 2014.
  54. 54. X. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its application, Mater. Charact. 48 (2002) 11-36; DOI: org/10.1016/S1044-5803(02)00192-4.10.1016/S1044-5803(02)00192-4
  55. 55. S. P. Baker, Nanoindentation Techniques, in Encyclopedia of materials: Science and Technology (Eds. K. H. J. Buschow, R. C. Cahn, M. C. Flemings, B. Ilschner, E.J. Kramer and S. Mahajan), Elsevier, New York 2001, pp. 5908-5915.
  56. 56. Agilent Technologies, How to select the correct indenter tip, Agilent Technologies, Inc. 2009, USA.
  57. 57. CSM Instruments, Nanoindentation approach to mechanical testing of extremely soft materials, CSM Instruments, No 35, June 2011, Switzerland.
  58. 58. S. Varughese, M. S. R. N. Kiran, U. Ramamurty and G. R. Desiraju, Nanoindentation in crystal engineering: quantifying mechanical properties of molecular crystals, Angew. Chem. Int. Ed. 52 (2013) 2701-2712; DOI: 10.1002/anie.201205002.10.1002/anie.20120500223315913
  59. 59. C. A. Schuh, Nanoindentation studies of materials, Materials Today 9 (2006) 32-40; DOI: 10.1016/ S1369-7021(06)71495-X.10.1016/S1369-7021(06)71495-X
  60. 60. A. C. Fischer-Cripps, Critical review of analysis and interpretation of nanoindentation test data, Surface & Coatings Tech. 200 (2006) 4153-4165; DOI: 10.1016/j.surfcoat.2005.03.018.10.1016/j.surfcoat.2005.03.018
  61. 61. E. Rettler, S. Hoeppener, B. W. Sigusch and U. S. Schubert, Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation, J. Mater. Chem. B1 (2013) 2789-2806; DOI: 10.1039/c3tb20120a.10.1039/c3tb20120a
  62. 62. M. Egart, I. Ilić, B. Janković, N. Lah and S. Srčič, Compaction properties of crystalline pharmaceutical ingredients according to the Walker model and nanomechanical attributes, Int. J. Pharm. 472 (2014b) 347-355; DOI: 10.1016/j.ijpharm.2014.06.047.10.1016/j.ijpharm.2014.06.047
  63. 63. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3054; access date June 20, 2013.
  64. 64. http://www.astm.org/Standards/E2546.htm.
  65. 65. Agilent Nano Indenter G200, User’s Guide, Agilent Technologies, 2009.
  66. 66. Agilent Technologies, Nanoindentation, scratch, and elevated temperature testing of cellulose and PMMA films, Agilent Technologies, Inc. 2010, USA.
  67. 67. H. Hertz, Über die Berührung fester elastischer Körper, J. Reine Angew. Mathematik 92 (1894) 156-171.
  68. 68. T. Chudoba and F. Richter, Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results, Surface Coatings Technol. 148 (2001) 191-198; DOI: 10.1016/S0257-8972(01)01340-8.10.1016/S0257-8972(01)01340-8
  69. 69. G. Feng and A. H. W. Ngan, Effects of creep and thermal drift on modulus measurement using depth-sensing indentation, J. Mater. Res. 17 (2002) 660-668; DOI: 010.1016/j.actbio.2014.08.004.10.1557/JMR.2002.0094
  70. 70. I. N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47-57; DOI: 10.1016/0020-72225(65)900019-4.
  71. 71. K. J. Ramos and D. F. Bhar, Mechanical behavior assessment of sucrose using nanoindentation, J. Mater. Res. 7 (2007) 2037-2045; DOI: 10.1557/JMR.2007.0249. 10.1557/jmr.2007.0249
  72. 72. M. L. Malkowska and K. A. Khan, Effect of recompression on the properties of tablets prepared by dry granulation, Drug. Dev. Ind. Pharm. 9 (1983) 331-347; DOI: 10.3109/03639048309044678.10.3109/03639048309044678
  73. 73. S. Inghelbrecht and J. P. Remon, Roller compaction and tableting of microcrystalline cellulose/ drug mixtures, Int. J. Pharm. 161 (1998) 215-224; DOI: 10.1016/S0378-5173(97)00356-6.10.1016/S0378-5173(97)00356-6
  74. 74. J. Lee, Structural heterogeneity of pharmaceutical compacts probed by micro-indentation, J. Mater. Sci.: Mater. Med. 19 (2008) 1981-1990; DOI: 10.1007/s10856-007-3283-3.10.1007/s10856-007-3283-317943416
  75. 75. A. Bolshakov and G. M. Pharr, Influences of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13 (1998) 1049-1058; DOI: 104910.1557/JMR.1999.0303.10.1557/JMR.1998.0146
  76. 76. J. Hay, Introduction to instrumented indentation testing, Experim. Tech. (2009) 66-72; DOI: 10.1111/j. 1747-1567.2009.00541.x.
  77. 77. Y. Huang, F. Zhang, K. C. Hwang, W. D. Nix, G. M. Pharr and G. Feng, A model of size effects in nano-indentation, J. Mech. Phys. Solids 54 (2006) 1668-1686; DOI: 10.1016/j.jmps.2006.02.002.10.1016/j.jmps.2006.02.002
  78. 78. K. Sangwal, Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids - some basic concepts and trends, Cryst. Res. Technol. 44 (2009) 1019-1037; DOI: 10.1002/crat.200900385.10.1002/crat.200900385
  79. 79. W. D. Nix and H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998) 411-425; DOI: S0022-5096(97)00086-0.
  80. 80. Agilent Technologies, Indentation rules of thumb: Applications and limits, Agilent Technologies, Inc. 2010, USA.
  81. 81. http://cp.literature.agilent.com/litweb/pdf/5990-5700EN.pdf; Indentation rules of thumb-Applications and Limits, Agilent Technologies; access date October 25, 2015.
  82. 82. http://www.iso.org/iso/catalogue_detail.htm?csnumber=30104; Metallic materials-Instrumented indentation test for hardness and materials parameters. ISO 14577-1: 2002; access date October 23, 2015.
  83. 83. http://www.nanomechanicsinc.com/index.php/Service-Lab/sample-preparation.html; access date October 25, 2015.
  84. 84. http://www.csm-instruments.com/ The influence of surface roughness on instrumented indentation testing (IIT); access date January 25, 2014.
  85. 85. K. I. Schiffmann, Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models, Philosoph. Magazine 91 (2011) 1163-1178; DOI: 10.1080/14786435.2010.487984.10.1080/14786435.2010.487984
  86. 86. L. J. Taylor, D. G. Papadopoulos, P. J. Dunn, A. C. Bentham, J. C. Mitchell and M. J. Snowden, Mechanical characterization of powders using nanoindentation, Powder Tech. 143-144 (2004) 179-185; DOI: 10.1016/j.powtec.2004.04.012.10.1016/j.powtec.2004.04.012
  87. 87. L. J. Taylor, D. G. Papadopoulos, P. J. Dunn, A. C. Bentham, N. J. Dawson, J. C. Mitchell and M. J. Snowden, Predictive milling of pharmaceutical materials using nanoindentation of single crystals, Org. Process Res. Dev. 8 (2004) 674-679; DOI: 10.1021/op0300241.10.1021/op0300241
  88. 88. http://cdn.intechweb.org/pdfs/16971.pdf; access date October 25, 2015.
  89. 89. M. Ghadiri and Z. Zhang, Impact attrition of particulate solids. Part 1: A theoretical model of chipping, Chem. Engin. Sci. 57 (2002) 3659-3669; DOI: 0009-2509(02)00240-3.10.1016/S0009-2509(02)00240-3
  90. 90. B. R. Lawn and D. B. Marshall, Hardness, toughness and brittleness: An indentation analysis, J. Am. Ceram. Soc. 62 (1979) 347-350.10.1111/j.1151-2916.1979.tb19075.x
  91. 91. R. V. Haware, P. Kim, L. Ruffino, B. Nimi, C. Fadrowsky, M. Doyle, S. W. X. M. Boerrigter, A. Cuitino and K. Morris, Anisotropic crystal deformation measurements determined using powder X-ray diffraction and a new in situ compression stage, Int. J. Pharm. 418 (2011) 199-206; DOI: 10.1016/j.ijpharm.2011.06.021. 10.1016/j.ijpharm.2011.06.02121708235
  92. 92. Y. Feng and D. J. W. Grant, Influence of crystal structure on the compaction properties of n-alkyl 4-hydrokxybenzoate esters (parabens), Pharm. Res. 23 (2006) 1608-1616; DOI: 10.1007/s11095-006-0275-9.10.1007/s11095-006-0275-916783478
  93. 93. S. E. David, M. Ramirez, P. Timmins and B. R. Conway, Comparative physical, mechanical and crystallographic properties of a series of gemfibrozil salts, J. Pharm. Pharmacol. 62 (2010) 1519-1525; DOI: 10.11117j.2042-7158.2010.01025.x.10.1111/j.2042-7158.2010.01025.x21039537
  94. 94. Y. Feng, J. W. Grant and C. C. Sun, Influence of crystal structure on the tableting properties of n-alkyl 4-hydroxybenzoate esters (parabens), J. Pharm. Sci. 96 (2007) 3324-3333; DOI: 10.1002/ jps.20981.10.1002/jps.2098117542021
  95. 95. R. Bandyopadhyay and D. J. W. Grant, Plasticity and slip system of plate-shaped crystals of Llysine monohydrochloridedihydrate, Pharm. Res. 19 (2002) 491-496; DOI: 0724-8741/02/0400-0491/0.10.1023/A:1015151830473
  96. 96. C. M. Reddy, K. A. Padmanabhan and G. R. Desiraju, Structure-property correlations in bending and brittle organic crystals, Cryst. Growth Des. 6 (2006) 2720-2731; DOI: 10.1021/cg060398w.10.1021/cg060398w
  97. 97. M. S. R. N. Kiran, S. Varughese, C. M. Reddy, U. Ramamurty and G. R. Desiraju, Mechanical anisotropy in crystalline saccharin: nanoindentation studies, Cryst. Growth Des. 10 (2010) 4650-4655; DOI: 10.1021/cg1009362.10.1021/cg1009362
  98. 98. M. Egart, B. Janković, N. Lah, I. Ilić and S. Srčič, Nanomechanical properties of selected single pharmaceutical crystals as a predictor of their bulk behaviour, Pharm. Res. 32 (2015) 469-481; DOI: 10.1007/s11095-014-1475-3.10.1007/s11095-014-1475-325092070
  99. 99. R. J. Roberts and R. C. Rowe, The compaction of pharmaceutical and other model materials: a pragmatic approach, Chem. Eng. Sci. 42 (1987) 903-911; DOI: 009-2509/87.
  100. 100. M. K. Mishra, U. Ramamurty and G. R. Desiraju, Hardness alternation in α,ω-alkanedicarboxylic acids, Chem. Asian J. 10 (2015) 2176-2181; DOI: 10.1002/asia.201500322.10.1002/asia.20150032225919633
  101. 101. M. K. Mishra, S. Varughese, U. Ramamurty, and G. R. Desiraju, Odd-even effect in the elastic moduli of α,ω-alkanedicarboxylic acids, J. Am. Chem. Soc. 135 (2013) 8121-8124; DOI: 10.1021/ ja402290hl.10.1021/ja402290h23688149
  102. 102. P. Sanphui, M. K. Mishra, U. Ramamurty and G. R. Desiraju, Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study, Mol. Pharmaceutics 12 (2015) 889-897; DOI: 10.1021/mp500719t.10.1021/mp500719t25587626
  103. 103. S. Chen, A. Y. Sheikh and R. Ho, Evaluation of effects of pharmaceutical processing on structural disorders of active pharmaceutical ingredient crystals using nanoindentation and highresolution total scattering pair distribution function analysis, J. Pharm. Sci. 103 (2014) 3879-3890; DOI: 10.1002/jps.24178.10.1002/jps.2417825331822
  104. 104. M. K. Mishra, P. Sanphui, U. Ramamurty and G. R. Desiraju, Solubility-hardness correlation in molecular crystals: curcumin and sulfathiazole polymorphs, Cryst. Growth Des. 14 (2014) 3054-3061; DOI: 10.1021/cg500305.
  105. 105. I. Azuri, E. Meirzadeh, D. Ehre, S. R. Cohen, A. M. Rappe, M. Lahav, I. Lubomirsky and L. Kronik, Unusually large Young’s moduli of amino acid molecular crystals, Angew. Chem. Int. Ed. 54 (2015) 1-6; DOI: 10.1002/anie.201505813.10.1002/anie.201505813
  106. 106. B. A. Zakharov, B. A. Kolesov and E. V. Boldyreva, Effect of pressure on crystalline L- and DLserine: revisited by a combined single-crystal X-ray diffraction at a laboratory source and polarized Raman spectroscopy study, Acta Cryst. B68 (2012) 275-286; DOI: 10.1107/s0108768112015960.10.1107/S0108768112015960
  107. 107. C. Murli, S. M. Sharma, S. Karmakar and S. K. Sikka, α-glycine under high pressures: a Raman scattering study, Physica B339 (2003) 23-30; DOI: 10.1016/S0921-4526(03)00446-0.10.1016/S0921-4526(03)00446-0
  108. 108. S. Zugner, K. Marquardt and I. Zimmerman, Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills, Eur. J. Biopharm. Pharm. 62 (2006) 194-201; DOI: 10.1016/j.ejpb.2005.08.002. 10.1016/j.ejpb.2005.08.002
  109. 109. O. Vegt, H. Vromans, J. Toonder and K. Voort Maarschalk, Influence of flaws and crystal properties on particle fracture in a jet mill, Powder Technol. 191 (2009) 72-77; DOI: 10.1016/j.powtec. 2008.09.014.
  110. 110. L. Vogel and W. Peukert, Breakage behaviour of different materials-construction of a master curve for the breakage probability, Powder Technol. 129 (2003) 101-110; DOI: 10.1016/S0032-5910(02)00217-6.10.1016/S0032-5910(02)00217-6
  111. 111. L. Vogel and W. Peukert, From single particle impact behavior to modeling of impact mills, Chem. Engin. Sci. 60 (2005) 5164-5176; DOI: 10.1016/j.ces.2005.03.064.10.1016/j.ces.2005.03.064
  112. 112. B. Govedarica, I. Ilić, R. Šibanc, R. Dreu and S. Srčič, The use of single particle mechanical properties for predicting the compressibility of pharmaceutical materials, Powder Technol. 225 (2012) 43-51; DOI: 10.1016/j.powtec.2012.03.030.10.1016/j.powtec.2012.03.030
  113. 113. P. P. Bag, M. Chen, C. C. Sun and C. M. Reddy, Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound, Cryst. Eng. Comm. 14 (2012) 3865-3867; DOI: 10.1039/c2ce25100k.10.1039/c2ce25100k
  114. 114. S. Chattoraj, L. Shi, M. Chen, A. Alhalaweh, S. Velaga and C. C. Sun, Origin of deteriorated crystal plasticity and compaction properties of a 1:1 cocrystal between piroxicam and saccharin, Cryst. Growth Des. 14 (2014) 3864-3874; DOI: 10.1021/cg500388s.10.1021/cg500388s
  115. 115. G. R. Krishna, L. Shi, P. P. Bag, C. C. Sun and C. M. Reddy, Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers, Cryst. Growth Des. 15 (2015) 1827-1832; DOI: 10.1021/cg5018642.10.1021/cg5018642
DOI: https://doi.org/10.1515/acph-2016-0032 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 303 - 330
Accepted on: Jan 11, 2016
Published on: Jun 29, 2016
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Mateja Egart, Biljana Janković, Stane Srčič, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.