Have a personal or library account? Click to login
A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2 Cover

A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2

Open Access
|Jun 2016

References

  1. 1. P. P. Spicer, J. D. Kretlow, S. Young, J. A. Jansen, F. K. Kasper and A. G. Mikos, Evaluation of bone regeneration using the rat critical size calvarial defect, Nat. Protoc. 7 (2012) 1918-1929; DOI: 10.1038/ nprot.2012.113.10.1038/nprot.2012.113
  2. 2. D. Hadjidakis and I. Androulakis, Bone remodeling, Ann. N. Y. Acad. Sci. 1092 (2006) 385-396; DOI: 10.1196/annals.1365.035.10.1196/annals.1365.035
  3. 3. J. M. Wozney and V. Rosen, Bone morphogenetic protein and bone morphogenetic protein family in bone formation and repair, Clin. Orthop. 346 (1998) 26-37.
  4. 4. J. G. Devine, J. R. Dettori, J. C. France, E. Brodt and R. A. McGuire, The use of rhBMP in spine surgery: Is there a cancer risk?, Evid Based Spine Care J. 3 (2012) 35-41; DOI: 10.1055/s-0031-1298616.10.1055/s-0031-1298616
  5. 5. N. E. Epstein, Complications due to the use of BMP/INFUSE in spine surgery: The evidence continues to mount, Surg. Neurol. Int. 4 (2013) S343-S352; DOI: 10.4103/2152-7806.114813.10.4103/2152-7806.114813
  6. 6. J. W. Hustedt and D. J. Blizzard, The controversy surrounding bone morphogenetic proteins in the spine: a review of current research, Yale J. Biol. Med. 87 (2014) 549-561.
  7. 7. J. O. Hollinger, H. Uludag and S. R. Win, Sustained release emphasizing recombinant human bone morphogenetic protein-2, Adv. Drug Deliv. Rev. 31 (1998) 303-318; DOI: 10.1016/S0169-409X(97)00126-9.10.1016/S0169-409X(97)00126-9
  8. 8. D. S. Keskin, A. Texcaner, P. Korkusuz, F. Korkusuz and V. Hasirci, Collagen-chondroitin sulfatebased PLLA-SAIB-coated rhBMP-2 delivery system for bone repair, Biomaterials 26 (2005) 4023-4034; DOI: 10.1016/j.biomaterials.2004.09.063.10.1016/j.biomaterials.2004.09.063
  9. 9. M. P. Ginebra, T. Traykova and J. A. Planell, Calcium phosphate cements as bone drug delivery systems: A review, J. Control. Release 113 (2006) 102-110; DOI: 10.1016/j.jconrel.2006.04.007.10.1016/j.jconrel.2006.04.007
  10. 10. S. Thanyaphoo and J. Kaewsrichan, Synthesis and evaluation of novel glass ceramics as drug delivery systems in osteomyelitis, J. Pharm. Sci. 101 (2012) 2870-2882; DOI: 10.1002/jps.23230.10.1002/jps.23230
  11. 11. I. Capila and R. J. Linhardt, Heparin-protein interactions, Angew.Chem. Int. Ed. Engl. 41 (2002) 391-412; DOI: 10.1002/1521-3773(20020201)41:3<;390::AID-ANIE390>3.0.CO;2-B.10.1002/1521-3773(20020201)41:3<;390::AID-ANIE390>3.0.CO;2-B
  12. 12. D. R. Bhumkar and V. B. Pokharkar, Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note, AAPS PharmSciTech. 7 (2006) E138-E143; DOI: 10.1208/ pt070250.10.1208/pt070250
  13. 13. B. Dick, K. G. Schmidt, D. Eisenmann and N. Pfeiffer, A new method for direct detection of heparin on surface-modified intraocular lenses: A modification of Jaques’ toluidine blue staining method, Ophthalmologica 211 (1997) 75-78.
  14. 14. P. K. Smith, A. K. Mallia and G. T. Hermanson, Colorimetric method for the assay of heparin content in immobilized heparin preparations, Anal. Biochem. 109 (1980) 466-473.10.1016/0003-2697(80)90679-X
  15. 15. H. Liu and C. Gao, Preparation and properties of ionically cross-linked chitosan nanoparticles, Polym. Adv. Technol. 20 (2009) 613-619; DOI: 10.1002/pat.1306.10.1002/pat.1306
  16. 16. S. Murugesan, J. Xie and R. J. Linhardt, Immobilization of Heparin: Approaches and Applications, Curr. Top Med. Chem. 8 (2008) 80-100.
  17. 17. E. Laemmel, J. Penhoat, R. Warocquier-Clérout and M. F. Sigot-Luizard, Heparin immobilized on proteins usable for arterial prosthesis coating: growth inhibition of smooth-muscle cells, J. Biomed. Mater. Res. 39 (1998) 446-452; DOI: 10.1002/(SICI)1097-4636(19980305)39:3<;446::AID-JBM14>3.0.CO;2-8.10.1002/(SICI)1097-4636(19980305)39:3<;446::AID-JBM14>3.0.CO;2-8
  18. 18. P. B. van Wachem, J. A. Plantinga, M. J. Wissink, R. Beernink, A. A. Poot, G. H. Engbers, T. Beugeling, W. G. van Aken, J. Feijen and M. J. van Luyn, In vivo biocompatibility of carbodiimidecrosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading, J. Biomed. Mater. Res. 55 (2001) 368-378; DOI: 10.1002/1097-4636(20010605)55:3<;368::AIDJBM1025> 3.0.CO;2-5.
  19. 19. Z. Grabarek and J. Gergely, Zero-length crosslinking procedure with the use of active esters, Anal. Biochem. 185 (1990) 131-135; DOI: 10.1016/0003-2697(90)90267-D.10.1016/0003-2697(90)90267-D
  20. 20. R. J. Linhardt, Perspective: 2003 Claude S. Hudson Award Address in Carbohydrate Chemistry. Heparin: Structure and Activity, J. Med. Chem. 46 (2003) 2551-2554; DOI: 10.1021/jm030176m.10.1021/jm030176m
  21. 21. T. Y. Liu, L. Y. Huang, S. H. Hu, M. C. Yang and S. Y. Chen, Core-Shell Magnetic Nanoparticles of heparin conjugate as recycling anticoagulants, J. Biomed. Nanotechnol. 3 (2007) 353-359; DOI: http://dx.doi.org/10.1166/jbn.2007.044.10.1166/jbn.2007.044
  22. 22. R. Ruppert, E. Hoffmann and W. Sebald, Human bone morphogenetic protein 2 contains a heparin binding site which modifies its biological activity, Eur. J. Biochem. 237 (1996) 295-302; DOI: 10.1111/j.1432-1033.1996.0295n.x.10.1111/j.1432-1033.1996.0295n.x
  23. 23. U. Lindahl and L. Kjellen, Heparin or heparan sulfate - what is the difference?, Thromb. Haemost. 66 (1991) 44-48.10.1055/s-0038-1646372
  24. 24. R. Guan, X. L. Sun, S. Hou, P. Wu and E.L. Chaikof, A glycopolymer chaperone for fibroblast growth factor-2, Bioconjug. Chem. 15 (2004) 145-151; DOI: 10.1021/bc034138t.10.1021/bc034138t
  25. 25. T. Takada, T. Katagiri, M. Ifuku, N. Morimura, M. Kobayashi, K. Hasegawa, A. Ogamo and R. Kamijo, Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins, J. Biol. Chem. 278 (2003) 43229-43235; DOI: 10.1074/jbc.M300937200.10.1074/jbc.M300937200
  26. 26. C. Scheufler, W. Sebald and M. Hϋlsmeyer, Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution, J. Mol. Biol. 287 (1999) 103-115; DOI: 10.1006/jmbi.1999.2590.10.1006/jmbi.1999.2590
  27. 27. X. Li, J. Xu, T. M. Filion, D. C. Ayers and J. Song, pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute, Clin. Orthop. Relat. Res. 471 (2013) 2540-2547; DOI: 10.1007/s11999-012-2644-5.10.1007/s11999-012-2644-5
  28. 28. E. R. Balmayor, G. A. Feichtinger, H. S. Azevedo, M. van Griensven and R. L. Reis, Starch-poly-ecaprolactone microparticles reduce the needed amount of BMP-2, Clin. Orthop. Relat. Res. 467 (2009) 3138-3148; DOI: 10.1089/ten.2006.0194.10.1089/ten.2006.0194
  29. 29. E. Zerath, X. Holy, B. Noël, A. Malouvier, M. Hott and P. J. Marie, Effects of BMP-2 on osteoblastic cells and on skeletal growth and bone formation in unloaded rats, Growth Horm. IGF Res. 8 (1998) 141-149.10.1016/S1096-6374(98)80104-4
  30. 30. H. S. Sandhu, L. E. Kanim, J. M. Kabo, J. M. Toth, E. N. Zeegen, D. Liu, R. B. Delamarter and E. G. Dawson, Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion, Spine (Phila Pa 1976) 21 (1996) 2115-2122.10.1097/00007632-199609150-000128893436
DOI: https://doi.org/10.1515/acph-2016-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 373 - 385
Accepted on: Mar 1, 2016
Published on: Jun 29, 2016
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Suphannee Thanyaphoo, Jasadee Kaewsrichan, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.