Have a personal or library account? Click to login
Physicochemical characterization and dissolution studies of acyclovir solid dispersions with Pluronic F127 prepared by the kneading method Cover

Physicochemical characterization and dissolution studies of acyclovir solid dispersions with Pluronic F127 prepared by the kneading method

Open Access
|Mar 2016

References

  1. 1. C. Cernik, K. Gallina and R. T. Brodell, The treatment of herpes simplex infections: an evidence-based review, Arch. Intern. Med.168 (2008) 1137–1144; DOI: 10.1001/archinte.168.11.1137.10.1001/archinte.168.11.1137
  2. 2. K. S. Erlich, Management of herpes simplex and varicella-zoster virus infections, West. J. Med.166 (1997) 211–215.
  3. 3. D. M. Thappa, Textbook of Dermatology, Leprology, and Venereology, 3rd ed., Elsevier, Gurgaon 2009, pp. 350–351.
  4. 4. J. Arnal, I. Gonzalez-Alvarez, M. Bermejo, G. L. Amidon, H. E. Junginger, S. Kopp, K. K. Midha, V. P. Shah, S. Stavchansky, J. B. Dressman and D. M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: acyclovir, J. Pharm. Sci.97 (2008) 5061–5073; DOI: 10.1002/jps.21392.10.1002/jps.21392
  5. 5. R. Sankar and S. Jain, Approaches for enhancing the bioavailability of acyclovir: a critical review, Int. J. Pharm. Biol. Sci. 4 (2013) 623–633.
  6. 6. K. M. Lutker, R. Quinones, J. Xu, A. Ramamoorthy and A. J. Matzger, Polymorphs and hydrates of acyclovir, J. Pharm. Sci. 3 (2011) 949–963; DOI: 10.1002/jps.22336.10.1002/jps.22336
  7. 7. K. Terada, H. Kurobe, M. Ito, Y. Yoshihashi, E. Yonemochi, K. Fujii and H. Uekusa, Polymorphic transformation behavior of acyclovir based on the thermodynamics and crystallography, J. Therm. Anal. Calorim.113 (2013) 1261–1267; DOI: 10.1007/s10973-013-3140-1.10.1007/s10973-013-3140-1
  8. 8. A. Kristl, S. Srcic, F. Vrecer, B. Sustar and D. Vojnovic, Polymorphism and pseudopolymorphism: influencing the dissolution properties of the guanine derivative acyclovir, Int. J. Pharm.139 (1996) 231–235; DOI: 10.1016/0378-5173(96)04601-7.10.1016/0378-5173(96)04601-7
  9. 9. Y. T. Sohn and S. H. Kim, Polymorphism and pseudopolymorphism of acyclovir, Arch. Pharm. Res.31 (2008) 231–234; DOI: 10.1007/s12272-001-1146-x.10.1007/s12272-001-1146-x18365695
  10. 10. P. K. Ghosh, R. J. Majithiya, M. L. Umrethia and R. S. R. Murthy, Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability, AAPS PharmSciTech.7 (2006) 172–177; DOI: 10.1208/pt070377.10.1208/pt070377275051917025257
  11. 11. C. Von Plessing Rossel, J. S. Carreño, M. Rodríguez-Baeza and J. B. Alderete, Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase, Quimica Nova23 (2000) 749–752; DOI: 10.1590/S0100-40422000000600007.10.1590/S0100-40422000000600007
  12. 12. T. Masuda, Y. Yoshihashi, E. Yonemochi, K. Fujii, H. Uekusa and K. Terada, Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir, Int. J. Pharm.422 (2012) 160–169; DOI: 10.1016/j.ijpharm.2011.10.046.10.1016/j.ijpharm.2011.10.04622079714
  13. 13. D. Patel and K. K. Sawant, Oral bioavailability enhancement of acyclovir by self-microemulsifying drug delivery systems (SMEDDS), Drug Dev. Ind. Pharm.33 (2007) 1318–1326; DOI: 10.1080/03639040701385527.10.1080/0363904070138552718097805
  14. 14. A. Kushwaha, S. K. Prajapati and B. Sharma, Comparative study of acyclovir solid dispersion for bioavailability enhancement, AJPTR1 (2011) 179–201.
  15. 15. R. Cortesi and E. Esposito, Acyclovir delivery systems, Expert Opin. Drug Deliv.5 (2008) 1217–1230; DOI: 10.1517/17425240802450340.10.1517/17425240802450340
  16. 16. A. Kushwaha, Solid dispersion: an approach to enhance the dissolution rate of acyclovir, Int. J. Nov. Drug Deliv. Tech.2 (2012) 291–296.
  17. 17. N. Sachan, S. Pushkar, S. S. Solanki and D. S. Bhatere, Enhancement of solubility of acyclovir by solid dispersion and inclusion complexation methods, World Appl. Sci. J.11 (2010) 857–864.
  18. 18. B. Karolewicz, M. Gajda, A. Owczarek, J. Pluta and A. Górniak, Physicochemical and dissolution studies of simvastatin solid dispersions with Pluronic F127, Pharmazie69 (2014) 589–594; DOI: 10.1691/ph.2014.3217.
  19. 19. B. Karolewicz, A. Górniak, A. Owczarek, E. Żurawska-Płaksej, A. Piwowar and J. Pluta, Thermal, spectroscopic, and dissolution studies of ketoconazole–Pluronic F127 system, J. Therm. Anal. Calorim.115 (2014) 2487–2493; DOI: 10.1007/s10973-014-3661-2.10.1007/s10973-014-3661-2
  20. 20. G. A. Shazly, M. A. Ibrahim, M. M. Badran and K. M. A. Zoheir, Utilizing Pluronic F-127 and Gelucire 50/13 solid dispersions for enhanced skin delivery of flufenamic acid, Drug Dev. Res.73 (2012) 299–307; DOI: 10.1002/ddr.21013.10.1002/ddr.21013
  21. 21. P. Kumar, C. Mohan, M. K. S. U. Shankar and M. Gulati, Physiochemical characterization and release rate studies of solid dispersions of ketoconazole with Pluronic F127 and PVP K-30, Iran. J. Pharm. Res.10 (2011) 685–694.
  22. 22. N. Kolašinac, K. Kachrimanis, I. Homšek, B. Grujič, Z. Ðurič and S. Ibrič, Solubility enhancement of desloratadine by solid dispersion in poloxamers, Int. J. Pharm.15 (2012) 161–170; DOI: 10.1016/j.ijpharm.2012.06.060.10.1016/j.ijpharm.2012.06.060
  23. 23. European Pharmacopoeia, 8th ed., European Directorate for the Quality of Medicines & Healthcare, Strasbourg 2014, pp. 331–333.
  24. 24. D. Q. M. Craig, The mechanisms of drug release from solid dispersions in water-soluble polymers, Int. J. Pharm.231 (2002) 131–144; DOI: 10.1016/S0378-5173(01)00891-2.10.1016/S0378-5173(01)00891-2
  25. 25. T. L. Threlfall, Analysis of organic polymorphs. A review, Analyst120 (1995) 2435–2460; DOI: 10.1039/AN9952002435.10.1039/an9952002435
  26. 26. M. G. Issa and H. G. Ferraz, Intrinsic dissolution as a tool for evaluating drug solubility in accordance with the Biopharmaceutics Classification System, Dissol. Technol.18 (2011) 6–13; DOI: 10.14227/DT180311P6.10.14227/DT180311P6
  27. 27. L. X. Yu, A. S. Carlin, G. L. Amidon and A. S. Hussain, Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs, Int. J. Pharm.270 (2004) 221–227; DOI: 10.1016/j.ijpharm.2003.10.016.10.1016/j.ijpharm.2003.10.01614726137
  28. 28. L. X. Yu, G. L. Amidon, J. E. Polli, H. Zhao, M. U. Mehta, D. P. Conner, V. P. Shah, L. J. Lesko, M. Chen, V. H. L. Lee and A. S. Hussain, Biopharmaceutics classification system: The scientific basis for biowaiver extensions, Pharm. Res.19 (2002) 921–925; DOI: 10.1023/A:1016473601633.10.1023/A:1016473601633
  29. 29. P. Zakeri-Milani, M. Barzegar-Jalali, M. Azimi and H. Valizadeh, Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability, Eur. J. Pharm. Biopharm. 73 (2009) 102–106; DOI: 10.1016/j.ejpb.2009.04.015.10.1016/j.ejpb.2009.04.01519442726
  30. 30. M. El-Badry, M. A. Hassan, M. A. Ibrahim and H. Elsaghir, Performance of Poloxamer 407 as hydrophilic carrier on the binary mixtures with nimesulide, Farmacia61 (2013) 1137–1150.
DOI: https://doi.org/10.1515/acph-2016-0008 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 119 - 128
Accepted on: Sep 28, 2015
Published on: Mar 7, 2016
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Bożena Karolewicz, Karol Nartowski, Janusz Pluta, Agata Górniak, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.