Have a personal or library account? Click to login
Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment Cover

Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment

Open Access
|May 2015

References

  1. 1. I. M. Verma and M. D. Weitzman, Gene therapy: twenty-first century medicine, Annu. Rev. Biochem. 74 (2005) 711-738; DOI: 10.1146/annurev.biochem.74.050304.091637.10.1146/annurev.biochem.74.050304.091637
  2. 2. C. Baum, A. Schamba ch, J. Bohne and M. Galla, Retrovirus vectors: toward the plentivirus? Mol. Ther. 13 (2006) 1050-1063; DOI: 10.1016/j.ymthe.2006.03.007.10.1016/j.ymthe.2006.03.007
  3. 3. C. Li, D. E. Bowles, T. van Dyke and R. J. Samulski, Adeno-associated virus vectors: potential applications for cancer gene therapy, Cancer Gene Ther. 12 (2005) 913-925; DOI: 10.1038/sj.cgt.7700876.10.1038/sj.cgt.7700876
  4. 4. L. S. Young, P. F. Se arle, D. Onion and V. Mautner, Viral gene therapy strategies: from basic science to clinical application, J. Pathol. 208 (2006) 299-318; DOI: 10.1002/path.1896.10.1002/path.1896
  5. 5. R. Wattiaux, N. Lauren t, S. Wa_ iaux-De Coninck and M. Jadot, Endosomes, lysosomes: their implication in gene transfer, Adv. Drug Deliv. Rev. 41 (2000) 201-208.10.1016/S0169-409X(99)00066-6
  6. 6. M. S. Al-Dosari and X. Gao, Nonviral gene delivery: principle, limitations, and recent progress, AAPS J. 11 (2009) 671-681; DOI: 10.1208/s12248-009-9143-y.10.1208/s12248-009-9143-y278207719834816
  7. 7. M. Morille, C. Passirani , A. Vonarbourg, A. Clavreul and J. P. Benoit, Progress in developing cationic vectors for non-viral systemic gene therapy against cancer, Biomaterials 29 (2008) 3477-3496; DOI: 10.1016/j.biomaterials.2008.04.036.10.1016/j.biomaterials.2008.04.03618499247
  8. 8. Y. Kaneda and Y. Tabata, Non-viral vectors for cancer therapy, Cancer Sci. 97 (2006) 348-354; DOI: 10.1111/j.1349-7006.2006.00189.x.10.1111/j.1349-7006.2006.00189.x16630130
  9. 9. J. Zabner, A. J. Fasbender , T. Moninger, K. A. Poellinger and M. J. Welsh, Cellular and molecular barriers to gene transfer by a cationic lipid, J. Biol. Chem. 270 (1995) 18997-9007.10.1074/jbc.270.32.189977642560
  10. 10. I. A. Schaap, F. Eghiaian, A. des Georges and C. Veigel, Effect of envelope proteins on the mechanical properties of influenza virus, J. Biol. Chem. 287 (2012) 41078-41088; DOI: 10.1074/jbc. M112.412726.10.1074/jbc
  11. 11. C. Moser, M. Muller, M. D. Kaeser, U. Weydemann and M. Amacker, Influenza virosomes as vaccine adjuvant and carrier system, Expert Rev. Vaccines 12 (2013) 779-791; DOI: 10.1586/14760584.2013.811195.10.1586/14760584.2013.811195
  12. 12. D. Koppers-Lalic, M. M. Hoge nboom, J. M. Middeldorp and D. M. Pegtel, Virus-modified exosomes for targeted RNA delivery; a new approach in nanomedicine, Adv. Drug Deliv. Rev. 65 (2013) 348-356; DOI: 10.1016/j.addr.2012.07.006.10.1016/j.addr.2012.07.006
  13. 13. J. D. Almeida, D. C. Edwards, C. M. Brand and T. D. Heath, Formation of virosomes from influenza subunits and liposomes, Lancet 2 (1975) 899-901. 10.1016/S0140-6736(75)92130-3
  14. 14. R. K. Scheule, Novel preparati on of functional Sindbis virosomes, Biochemistry 25 (1986) 4223-4232.10.1021/bi00363a009
  15. 15. W. A. Petri, Jr. and R. R. Wagn er, Reconstitution into liposomes of the glycoprotein of vesicular stomatitis virus by detergent dialysis, J. Biol. Chem. 254 (1979) 4313-4316.10.1016/S0021-9258(17)30004-2
  16. 16. K. Metsikko, G. van Meer and K. Simons, Reconstitution of the fusogenic activity of vesicular stomatitis virus, EMBO J. 5 (1986) 3429-3435.10.1002/j.1460-2075.1986.tb04665.x
  17. 17. A. Helenius, E. Fries and J. Kart enbeck, Reconstitution of Semliki forest virus membrane, J. Cell Biol. 75 (1977) 866-880.10.1083/jcb.75.3.866
  18. 18. A. Helenius, M. Sarvas and K. Simo ns, Asymmetric and symmetric membrane reconstitution by detergent elimination: Studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacillus licheniformis, Eur. J. Biochem. 116 (1981) 27-35.
  19. 19. T. Uchida, J. Kim, M. Yamaizumi, Y. Miyake and Y. Okada, Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin, J. Cell Biol. 80 (1979) 10-20.10.1083/jcb.80.1.10
  20. 20. S. Bagai, A. Puri, R. Blumenthal and D. P. Sarkar, Hemagglutinin-neuraminidase enhances F protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells, J. Virol. 67 (1993) 3312-3318.10.1128/jvi.67.6.3312-3318.1993
  21. 21. A. Vainstein, M. Hershkovitz, S. Isra el, S. Rabin and A. Loyter, A new method for reconstitution of highly fusogenic Sendai virus envelopes, Biochim. Biophys. Acta 773 (1984) 181-188.10.1016/0005-2736(84)90081-6
  22. 22. A. Jamali, M. Holtrop, A. de Haan, H. Hashemi, M. Shenagari, A. Memarnejadian, F. Roohvand, F. Sabahi, M. T. Kheiri and A. Huckriede, Cationic influenza virosomes as an adjuvanted delivery system for CTL induction by DNA vaccination, Immunol. Lett . 148 (2012) 77-82; DOI: 10.1016/j.imlet. 2012.08.006.
  23. 23. S. G. Reed, S. Bertholet, R. N. Coler a nd M. Friede, New horizons in adjuvants for vaccine development, Trends Immunol. 30 (2009) 23-32; DOI: 10.1016/j.it.2008.09.006.10.1016/j.it.2008.09.00619059004
  24. 24. J. J. Skehel and D. C. Wiley, Receptor b inding and membrane fusion in virus entry: the influenza hemagglutinin, Annu. Rev. Biochem. 69 (2000) 531-569; DOI: 10.1146/annurev.biochem.69.1.531.10.1146/annurev.biochem.69.1.53110966468
  25. 25. M. Ohuchi, N. Asaoka, T. Sakai and R. Ohu chi, Roles of neuraminidase in the initial stage of influenza virus infection, Microbes Infect. 8 (2006) 1287-1293; DOI: 10.1016/j.micinf.2005.12.008.10.1016/j.micinf.2005.12.00816682242
  26. 26. R. Wagner, M. Matrosovich and H. D. Klenk , Functional balance between haemagglutinin and neuraminidase in influenza virus infections, Rev. Med. Virol. 12 (2002) 159-166; DOI: 10.1002/ rmv.352.10.1002/rmv.35211987141
  27. 27. T. Nakajima, Novel gene transfer systems: i ntelligent gene transfer vectors for gene medicines, Curr. Top. Med. Chem. 12 (2012) 1594-1602.
  28. 28. T. Stegmann, H. W. Morselt, F. P. Booy, J. F . van Breemen, G. Scherphof and J. Wilschut, Functional reconstitution of influenza virus envelopes, EMBO J. 6 (1987) 2651-2659.10.1002/j.1460-2075.1987.tb02556.x
  29. 29. M. G. Cusi, Applications of influenza virosom es as a delivery system, Hum. Vaccin. 2 (2006) 1-7.10.4161/hv.2.1.249417012895
  30. 30. E. Soussan, S. Cassel, M. Blanzat and I. Rico- La_ es, Drug delivery by so_ ma_ er: matrix and vesicular carriers, Angew. Chem. Int. Ed. Engl. 48 (2009) 274-288; DOI: 10.1002/anie.200802453.10.1002/anie.20080245319072808
  31. 31. G. V. Radha, T. S. Rani and B. Sarvani, A revie w on proniosomal drug delivery system for targeted drug action, J. Basic Clin. Pharm. 4 (2013) 42-48; DOI: 10.4103/0976-0105.113609.10.4103/0976-0105.113609397926324808669
  32. 32. H. I. Chang and M. K. Yeh, Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy, Int. J. Nanomedicine 7 (2012) 49-60; DOI: 10.2147/IJ N.S26766.
  33. 33. A. K. Dey and I. K. Srivastava, Novel adjuvants a nd delivery systems for enhancing immune responses induced by immunogens, Expert Rev. Vaccines 10 (2011) 227-251; DOI: 10.1586/erv.10.142.10.1586/erv.10.14221105782
  34. 34. M. L. De Temmerman, J. Rejman, J. Demeester, D. J. Irvine, B. Gander and S. C. De Smedt, Particulate vaccines: on the quest for optimal delivery and immune response, Drug Discov. Today 16 (2011) 569-582; DOI: 10.1016/j.drudis.2011.04.006. 10.1016/j.drudis.2011.04.00621570475
  35. 35. A. Huckriede, L. Bungener, T. Stegmann, T. Daemen, J. Medema, A. M. Palache and J. Wilschut, The virosome concept for influenza vaccines, Vaccine 23 (Suppl. 1) (2005) S26-S38; DOI: 10.1016/j. vaccine.2005.04.026.
  36. 36. A. M. Harandi and D. Medaglini, Mucosal adjuvants, C urr. HIV Res. 8 (2010) 330-335.10.2174/157016210791208695
  37. 37. I. Jabbal-Gill, Nasal vaccine innovation, J. Drug Tar get. 18 (2010) 771-786; DOI: 10.3109/ 1061186X.2010.523790.10.3109/1061186X.2010.523790
  38. 38. S. Beg, A. Samad, I. Nazish, R. Sultana, M. Rahman, M. Z. Ahmad and M. Akbar, Colloidal drug delivery systems in vaccine delivery, Curr. Drug Targets 14 (2013) 123-137.10.2174/138945013804806523
  39. 39. S. M. Moghimi and J. Szebeni, Stealth liposomes and lon g circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog. Lipid Res. 42 (2003) 463-478.
  40. 40. E. Waelti, N. Wegmann, R. Schwaninger, A. Wetterwald, C. Wingenfeld, B. Rothen-Rutishauser and C. D. Gimmi, Targeting her-2/neu with antirat Neu virosomes for cancer therapy, Cancer Res. 62 (2002) 437-444.
  41. 41. E. Mastrobattista, P. Schoen, J. Wilschut, D. J. Crommeli n and G. Storm, Targeting influenza virosomes to ovarian carcinoma cells, FEBS Lett. 509 (2001) 71-76.10.1016/S0014-5793(01)03112-X
  42. 42. J. Liu, J. Wu, B. Wang, S. Zeng, F. Qi, C. Lu, Y. Kimura a nd B. Liu, Oral vaccination with a liposomeencapsulated influenza DNA vaccine protects mice against respiratory challenge infection, J. Med. Virol. 86 (2014) 886-894; DOI: 10.1002/jmv.23768.10.1002/jmv.23768
  43. 43. J. de Jonge, J. M. Leenhouts, M. Holtrop, P. Schoen, P. Sch errer, P. R. Cullis, J. Wilschut and A. Huckriede, Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA, Biochem. J. 405 (2007) 41-49; DOI: 10.1042/BJ20061756.10.1042/BJ20061756
  44. 44. J. de Jonge, M. Holtrop, J. Wilschut and A. Huckriede, Recon stituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs, Gene Ther. 13 (2006) 400-411; DOI: 10.1038/sj.gt.3302673.10.1038/sj.gt.3302673
  45. 45. L. Bungener, K. Serre, L. Bij l, L. Leserman, J. Wilschut, T. Daemen and P. Machy, Virosome-mediated delivery of protein antigens to dendritic cells, Vaccine 20 (2002) 2287-2295.10.1016/S0264-410X(02)00103-2
  46. 46. P. Schoen, A. Chonn, P. R. Cullis, J. Wilschut and P. Scherrer , Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles, Gene Ther. 6 (1999) 823-832; DOI: 10.1038/sj.gt.3300919.10.1038/sj.gt.330091910505107
  47. 47. R. Bron, A. Ortiz and J. Wilschut, Cellular cytoplasmic delive ry of a polypeptide toxin by reconstituted influenza virus envelopes (virosomes), Biochemistry 33 (1994) 9110-9117.10.1021/bi00197a0138049214
  48. 48. L. Bungener, A. Huckriede, A. de Mare, J. de Vries-Idema, J. Wil schut and T. Daemen, Virosomemediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity, Vaccine 23 (2005) 1232-1241; DOI: 10.1016/j.vaccine.2004.09.002.10.1016/j.vaccine.2004.09.002
  49. 49. A. Arkema, A. Huckriede, P. Schoen, J. Wilschut and T. Daemen, In duction of cytotoxic T lymphocyte activity by fusion-active peptide-containing virosomes, Vaccine 18 (2000) 1327-1333.10.1016/S0264-410X(99)00404-1
  50. 50. Y. Kaneda, Virosomes: evolution of the liposome as a targeted drug delivery system, Adv. Drug Deliv. Rev. 43 (2000) 197-205.
  51. 51. N. Nakamura, D. A. Hart, C. B. Frank, L. L. Marchuk, N. G. Shrive, N. Ota, K. Taira, H. Yoshikawa and Y. Kaneda, Efficient transfer of intact oligonucleotides into the nucleus of ligament scar fibroblasts by HVJ-cationic liposomes is correlated with effective antisense gene inhibition, J. Biochem. 129 (2001) 755-759.10.1093/oxfordjournals.jbchem.a00291611328598
  52. 52. Y. Krishnamachari, S. M. Geary, C. D. Lemke, and A. K. Salem, Nanopa rticle delivery systems in cancer vaccines, Pharm. Res. 28 (2011) 215-236; DOI: 10.1007/s11095-010-0241-4.10.1007/s11095-010-0241-4355924320721603
  53. 53. T. Stegmann, T. Kamphuis, T. Meij erhof, E. Goud, A. de Haan and J. Wi lschut, Lipopeptide-adjuvanted respiratory syncytial virus virosomes: A safe and immunogenic non-replicating vaccine formulation, Vaccine 28 (2010) 5543-5550; DOI: 10.1016/j.vaccine.2010.06.041. 10.1016/j.vaccine.2010.06.04120600502
  54. 54. M. Shafique, J. Wilschut and A. de Haan, Induction of mucosal and syst emic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands, Vaccine 30 (2012) 597-606; DOI: 10.1016/j.vaccine.2011.11.054.10.1016/j.vaccine.2011.11.05422120195
  55. 55. R. J. Cox, G. Pedersen, A. S. Madhun, S. Svindland, M. Saevik, L. Break well, K. Hoschler, M. Willemsen, L. Campitelli, J. K. Nostbakken, G. J. Weverling, J. Klap, K. C. McCullough, M. Zambon, R. Kompier and H. Sjursen, Evaluation of a virosomal H5N1 vaccine formulated with Matrix M adjuvant in a phase I clinical trial, Vaccine 29 (2011) 8049-8059; DOI: 10.1016/j.vaccine.2011.08.042.10.1016/j.vaccine.2011.08.04221864624
  56. 56. M. D. Joshi, W. J. Unger, G. Storm, Y. van Kooyk and E. Mastrobattista, Targeting tumor antigens to dendritic cells using particulate carriers, J. Control. Release 161 (2012) 25-37; DOI: 10.1016/j.jconrel. 2012.05.010.
  57. 57. D. Felnerova, J. F. Viret, R. Gluck and C. Moser, Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs, Curr. Opin. Biotech. 15 (2004) 518-529; DOI: 10.1016/j.copbio. 2004.10.005.
  58. 58. G. Leroux-Roels, Unmet needs in modern vaccinology: adjuvants to improve t he immune response, Vaccine 28 (Suppl. 3) (2010) C25-C36; DOI: 10.1016/j.vaccine.2010.07.021.10.1016/j.vaccine.2010.07.02120713254
  59. 59. P. Nordly, H. B. Madsen, H. M. Nielsen and C. Foged, Status and future pros pects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators, Expert Opin. Drug Deliv. 6 (2009) 657-672; DOI: 10.1517/17425240903018863.10.1517/1742524090301886319538037
  60. 60. P. G. Cech, T. Aebi, M. S. Abdallah, M. Mpina, E. B. Machunda, N. Westerfeld , S. A. Stoffel, R. Zurbriggen, G. Pluschke, M. Tanner, C. Daubenberger, B. Genton and S. Abdulla, Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: Randomized phase 1b trial in semi-immune adults & children, PLoS One 6 (2011) e22273; DOI: 10.1371/journal. pone.0022273.
  61. 61. A. Cassone and A. Casadevall, Recent progress in vaccines against fungal dis eases, Curr. Opin. Microbiol. 15 (2012) 427-433; DOI: 10.1016/j.mib.2012.04.004.10.1016/j.mib.2012.04.004342435222564747
  62. 62. J. Torresi, D. Johnson and H. Wedemeyer, Progress in the development of prev entive and therapeutic vaccines for hepatitis C virus, J. Hepatol. 54 (2011) 1273-1285; DOI: 10.1016/j.jhep.2010.09.040.10.1016/j.jhep.2010.09.04021236312
  63. 63. I. Naldi, M. Taranta, L. Gherardini, G. Pelosi, F. Viglione, S. Grimaldi, L. P ani and C. Cinti, Novel epigenetic target therapy for prostate cancer: a preclinical study, PLoS One 9 (2014) e98101; DOI: 10.1371/journal.pone.0098101.10.1371/journal.pone.0098101403113724851905
  64. 64. R. M. Roy and B. S. Klein, Dendritic cells in antifungal immunity and vaccine design, Cell Host Microbe 11 (2012) 436-446; DOI: 10.1016/j.chom.2012.04.005.10.1016/j.chom.2012.04.005340196522607797
  65. 65. A. Huckriede, L. Bungener, W. ter Veer, M. Holtrop, T. Daemen, A. M. Palache and J. Wilschut, Influenza virosomes: combining optimal presentation of hemagglutinin with immunopotentiating activity, Vaccine 21 (2003) 925-931.
  66. 66. E. Nardin, The past decade in malaria synthetic peptide vaccine clinical trials, Hum. Vaccin. 6 (2010) 27-38.10.4161/hv.6.1.960120173408
  67. 67. J. Wilschut, Influenza vaccines: the virosome concept, Immunol. Lett. 122 (2009) 118-121; DOI: 10.1016/j.imlet.2008.11.006.10.1016/j.imlet.2008.11.00619100779
  68. 68. C. Hatz, R. van der Ploeg, B. R. Beck, G. Frosner, M. Hunt and C. Herzog, Successf ul memory response following a booster dose with a virosome-formulated hepatitis a vaccine delayed up to 11 years, Clin. Vaccine Immunol. 18 (2011) 885-887; DOI: 10.1128/CVI.00358-10.10.1128/CVI.00358-10312252821411599
  69. 69. W. Z. Zhou, D. S. Hoon, S. K. Huang, S. Fujii, K. Hashimoto, R. Morishita, and Y. K aneda, RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization, Hum. Gene Ther. 10 (1999) 2719-2724; DOI: 10.1089/10430349950016762.10.1089/1043034995001676210566900
  70. 70. M. G. Cusi, M. T. Del Vecchio, C. Terrosi, G. G. Savellini, G. Di Genova, M. La Plac a, F. Fallarino, C. Moser, C. Cardone, G. Giorgi, G. Francini and P. Correale, Immune-reconstituted influenza virosome containing CD40L gene enhances the immunological and protective activity of a carcinoembryonic antigen anticancer vaccine, J. Immunol. 174 (2005) 7210-7216. 10.4049/jimmunol.174.11.721015905566
  71. 71. P. Correale, M. T. Del Vecchio, T. Renieri, G. Di Genova, M. La Placa, C. Remondo, G. G. Savellini, C. Terrosi, R. Zurbriggen, M. Amacker, G. Francini and M. G. Cusi, Anti-angiogenetic effects of immune-reconstituted influenza virosomes assembled with parathyroid hormone-related protein derived peptide vaccine, Cancer Lett. 263 (2008) 291-301; DOI: 10.1016/j.canlet.2008.01.018.10.1016/j.canlet.2008.01.01818291576
  72. 72. U. Wiedermann, C. Wiltschke, J. Jasinska, M. Kundi, R. Zurbriggen, E. Garner-Spitzer, R. Bartsch, G. Steger, H. Pehamberger, O. Scheiner and C. C. Zielinski, A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study, Breast Cancer Res. Treat. 119 (2010) 673-683.10.1007/s10549-009-0666-920092022
  73. 73. R. Schwaninger, E. Waelti, P. Zajac, A. Wetterwald, D. Mueller and C. D. Gimmi, Virosom es as new carrier system for cancer vaccines, Cancer Immunol. Immunother. 53 (2004) 1005-17; DOI: 10.1007/ s00262-004-0545-5.10.1007/s00262-004-0545-515185010
  74. 74. L. Bungener, A. de Mare, J. de Vries-Idema, P. Sehr, A. van der Zee, J. Wilschut and T. Daemen, A virosomal immunization strategy against cervical cancer and pre-malignant cervical disease, Antivir. Ther. 11 (2006) 717-727.10.1177/135965350601100616
  75. 75. M. Walczak, A. de Mare, A. Riezebos-Brilman, J. Regts, B. N. Hoogeboom, J. T. Visser, M. Fiedler, P. Jansen-Durr, A. G. van der Zee, H. W. Nij man, J. Wilschut and T. Daemen, Heterologous primeboost immunizations with a virosomal and an alphavirus replicon vaccine, Mol. Pharm. 8 (2011) 65-77; DOI: 10.1021/mp1002043.10.1021/mp100204320825215
  76. 76. M. Adamina, R. Schumacher, P. Zajac, W. P. Weber, R. Rosenthal, C. Groeper, C. Feder, R. Z urbriggen, M. Amacker, G. C. Spagnoli, D. Oertli and M. Heberer, Advanced liposomal vectors as cancer vaccines in melanoma immunotherapy, J. Liposome Res. 16 (2006) 195-204; DOI: 10.1080/ 08982100600848546.10.1080/0898210060084854616952874
  77. 77. R. Schumacher, M. Amacker, D. Neuhaus, R. Rosenthal, C. Groeper, M. Heberer, G. C. Spagnoli , R. Zurbriggen and M. Adamina, Efficient induction of tumoricidal cytotoxic T lymphocytes by HLA-A0201 restricted, melanoma associated, L(27)Melan-A/MART-1(26-35) peptide encapsulated into virosomes in vitro, Vaccine 23 (2005) 5572-5582; DOI: 10.1016/j.vaccine.2005.07.099.10.1016/j.vaccine.2005.07.09916165256
  78. 78. M. K. Zakaria, I. Khan, P. Mani, P. Chattopadhyay, D. P. Sarkar and S. Sinha, Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells, BMC Cancer 14 (2014) 582; DOI: 10.1186/1471-2407-14-582.10.1186/1471-2407-14-582415391125108398
  79. 79. Y. Nishimura, H. Mieda, J. Ishii, C. Ogino, T. Fujiwara and A. Kondo, Targeting cancer cell- specific RNA interference by siRNA delivery using a complex carrier of affibody-displaying bio-nanocapsules and liposomes, J. Nanobiotechnol. 11 (2013) 19; DOI: 10.1186/1477-3155-11-19.10.1186/1477-3155-11-19369938023800313
  80. 80. C. Cinti, M. Taranta, I. Naldi and S. Grimaldi, Newly engineered magnetic erythrocytes for s ustained and targeted delivery of anti-cancer therapeutic compounds, PLoS One 6 (2011) e17132; DOI: 10.1371/journal.pone.0017132.10.1371/journal.pone.0017132304415421373641
  81. 81. M. Kurooka and Y. Kaneda, Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells, Cancer Res. 67 (2007) 227-236; DOI: 10.1158/ 0008-5472.CAN-06-1615.10.1158/0008-5472.CAN-06-161517210703
  82. 82. A. Fujihara, M. Kurooka, T. Miki and Y. Kaneda, Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation, Cancer Immunol. Immunother. 57 (2008) 73-84; DOI: 10.1007/s00262-007-0351-y.10.1007/s00262-007-0351-y17602226
  83. 83. M. Tanaka, T. Shimbo, Y. Kikuchi, M. Matsuda and Y. Kaneda, Sterile alpha motif containing dom ain 9 is involved in death signaling of malignant glioma treated with inactivated Sendai virus particle (HVJ-E) or type I interferon, Int. J. Cancer. 126 (2010) 1982-1991; DOI: 10.1002/ij c.24965.10.1002/ijc.2496519830690
  84. 84. Y. Kawaguchi, Y. Miyamoto, T. Inoue and Y. Kaneda, Efficient eradication of hormone-resistant h uman prostate cancers by inactivated Sendai virus particle, Int. J. Cancer 124 (2009) 2478-2487; DOI: 10.1002/ij c.24234.10.1002/ijc.2423419173282
DOI: https://doi.org/10.1515/acph-2015-0019 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 105 - 116
Accepted on: Feb 9, 2015
Published on: May 23, 2015
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2015 Hanqing Liu, Zhigang Tu, Fan Feng, Haifeng Shi, Keping Chen, Ximing Xu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.