Have a personal or library account? Click to login
The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation Cover

The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation

Open Access
|Oct 2017

References

  1. 1. Budna J, Celichowski P, Karimi P, Kranc W, Bryja A, Ciesiółka S, Rybska M, Borys S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Does Porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Adv Cell Biol. 2017;5(1):1-14.10.1515/acb-2017-0001
  2. 2. Kranc W, Budna J, Chachuła A, Borys S, Bryja A, Rybska M, Ciesiółka S, Sumelka E, Jeseta M, Brüssow KP, Bukowska D, Antosik P, Bruska M, Nowicki M, Zabel M, Kempisty B. “Cell Migration” Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36(4):273-282.10.1089/dna.2016.342528384068
  3. 3. Kranc W, Celichowski P, Budna J, Khozmi R, Bryja A, Ciesiółka S, Rybska M, Borys S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Positive regulation of macromolecule metabolic process belongs to the main mechanisms crucial for porcine oocytes maturation. Adv Cell Biol. 2017;5(1):15-32.10.1515/acb-2017-0002
  4. 4. Ciesiółka S, Bryja A, Budna J, Kranc W, Chachuła A, Bukowska D, Piotrowska H, Porowski L, Antosik P, Bruska M, Brüssow KP, Nowicki M, Zabel M, Kempisty B. Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation – a primary cell culture approach. J Biol Regul Homeost Agents. 2016;30(3):693-702.
  5. 5. Ciesiółka S, Budna J, Jopek K, Bryja A, Kranc W, Borys S, Jeseta M, Chachuła A, Ziółkowska A, Antosik P, Bukowska D, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Time- and Dose-Dependent Effects of 17 Beta-Estradiol on Short-Term, Real-Time Proliferation and Gene Expression in Porcine Granulosa Cells. Biomed Res Int. 2017;2017:9738640.10.1155/2017/9738640535040228337462
  6. 6. Hazzard TM, Xu F, Stouffer RL. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biol Reprod. 2002;67:1305-1312.10.1095/biolreprod67.4.130512297549
  7. 7. Trau HA, Brannstrom M, Curry TE, JR, Duffy DM. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum Reprod. 2016;31:436-444.10.1093/humrep/dev320471681026740577
  8. 8. Li S-H, Hwu Y-M, Lu C-H, Chang H-H, Hsieh C-E, Lee RK-K. VEGF and FGF2 Improve Revascularization, Survival, and Oocyte Quality of Cryopreserved, Subcutaneously-Transplanted Mouse Ovarian Tissues. Int J Mol Sci. 2016;17(8):1-13.
  9. 9. Anchordoquy JM, Anchordoquy JP, Testa JA, Sirini MA, Furnus CC. Influence of vascular endothelial growth factor and Cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biol Int. 2015;39:1090-1098.10.1002/cbin.1048125879691
  10. 10. Masaki T. Endothelins: Homeostatic and Compensatory Actions in the Circulatory and Endocrine Systems. Endocrine Reviews. 1993;14(3):256-268.10.1210/edrv-14-3-2568319594
  11. 11. Ko C, Gieske MC, Al-Alem L, Hahn Y, Su W, Gong MC, Iglarz M, Koo Y. Endothelin-2 in ovarian follicle rupture. Endocrinology. 2006;147(4):1770-9.10.1210/en.2005-122816410304
  12. 12. Bridges PJ, Jo M, Al Alem L, Na G, Su W, Gong MC, Jeoung M, Ko C. Production and binding of endothelin-2 (EDN2) in the rat ovary: endothelin receptor subtype A (EDNRA)-mediated contraction. Reproduction, fertility, and development. 2010;22(5):780-7.10.1071/RD0919420450830
  13. 13. Thomas M, Augustin HG. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis. 2009;12(2):125-37.10.1007/s10456-009-9147-319449109
  14. 14. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994-8.10.1126/science.284.5422.199410373119
  15. 15. Hu B, Cheng SY. Angiopoietin-2: development of inhibitors for cancer therapy. Current oncology reports. 2009;11(2):111-6.10.1007/s11912-009-0017-3286710919216842
  16. 16. Hata K, Udagawa J, Fujiwaki R, Nakayama K, Otani H, Miyazaki K. Expression of angiopoietin-1, angiopoietin-2, and Tie2 genes in normal ovary with corpus luteum and in ovarian cancer. Oncology. 2002;62(4):340-8.10.1159/00006506612138242
  17. 17. Santulli G. Angiopoietin-like proteins: a comprehensive look. Frontiers in endocrinology. 2014;5:410.3389/fendo.2014.00004389953924478758
  18. 18. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep. 2012;32(3):211-9.10.1042/BSR2011010222458843
  19. 19. Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Müller M, Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006;281:934-944.10.1074/jbc.M50651920016272564
  20. 20. Liu Z, Liu C, Hao C, Xue Q, Huang X, Zhang N, Bao H, Qu Q. Aberrant expression of angiopoietin-like proteins 1 and 2 in cumulus cells is potentially associated with impaired oocyte developmental competence in polycystic ovary syndrome. Gynecol Endocrinol. 2016;32(7):557-61.10.3109/09513590.2016.113846326829602
  21. 21. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994;370(6484):61-5.10.1038/370061a08015608
  22. 22. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol. 2001;54(2):57-79.10.1136/mp.54.2.57118700611322167
  23. 23. Azoury J, Lee KW, Georget V, Hikal P, Verlhac MH. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development. 2011;138:2903-8.10.1242/dev.06026921653611
  24. 24. Chaigne A, Campillo C, Gov NS, Voituriez R, Sykes C, Verlhac MH, Terret ME. A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun. 2015;6:6027.10.1038/ncomms702725597399
  25. 25. Valdenaire O, Lepailleur-Enouf D, Egidy G, Thouard A, Barret A, et al. A fourth isoform of endothelin-converting enzyme (ECE-1) is generated from an additional promoter molecular cloning and characterization. Eur J Biochem. 1999; 264: 341-349.10.1046/j.1432-1327.1999.00602.x10491078
Language: English
Page range: 135 - 142
Submitted on: Aug 5, 2017
Accepted on: Sep 13, 2017
Published on: Oct 11, 2017
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Mariusz J. Nawrocki, Piotr Celichowski, Joanna Budna, Artur Bryja, Wiesława Kranc, Sylwia Ciesiółka, Sylwia Borys, Sandra Knap, Michal Jeseta, Ronza Khozmi, Dorota Bukowska, Paweł Antosik, Klaus P. Brüssow, Małgorzata Bruska, Michał Nowicki, Maciej Zabel, Bartosz Kempisty, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.