Figure 1
![3D structural models of DNA (3D-DART *.pdb files) from sequences of the AGT promoter hypoxia-response element (HRE) region: G allele (top), 5′–GCGTG–3′ (olive green) and A allele (bottom), 5′–GCATG–3′ (olive green) with the mutation region (G→A) (white). Molecular graphics were created using the Chimera package (version 1.11.2), developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from a U.S. National Institutes of Health grant P41-GM103311 [20].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6470671583f1392090d68c9c/j_abm-2018-0027_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T065430Z&X-Amz-Expires=3600&X-Amz-Signature=602d1f720c464939dfe95370348837e1b90fa95e950342a21e7324e7ff810b3b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2
![3D representation of the complex between hypoxia-inducible factor 1 (HIF-1) with its aryl receptor nuclear translocator (ARNT) subunit (dark blue) and HIF-1a subunit (sky blue) and DNA (gold) with hypoxia-response element (HRE) (chain A 5′–ACGTG–3′) (olive green). Molecular graphics were created from Protein Data Base entry 1D7G.pdb [21] with the Chimera package (version 1.11.2) [20].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6470671583f1392090d68c9c/j_abm-2018-0027_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T065430Z&X-Amz-Expires=3600&X-Amz-Signature=ac1ec6323a241dc963c93e06da4845283d65fb6451b661d3fad3ba6ccb56453f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3
![Visualization of isolated hypoxia-inducible factor 1 (HIF-1) protein with its aryl receptor nuclear translocator (ARNT) subunit (dark blue) and HIF-1a subunit (sky blue). We removed the 3D DNA structure and optimized the isolated HIF-1 protein (HIF-1a and ARNT complex) using VEGA ZZ software (release 3.1.1.42) [22] by removing water molecules and adding hydrogen atoms before creating the molecular graphics with the Chimera package (version 1.11.2) [20].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6470671583f1392090d68c9c/j_abm-2018-0027_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T065430Z&X-Amz-Expires=3600&X-Amz-Signature=4f5a5ac2e45f290adff34667c8d76ba69b45e0f7be6414810e729f9abbcb1e01&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4

Figure 5

Figure 6
![Differences in the binding pattern between G allele– hypoxia-inducible factor 1 (HIF-1) (left) and A allele–HIF-1 (right) interactions; molecular graphics were created using the Chimera package (version 1.11.2) [20] from the present docking results using High Ambiguity Driven protein-protein DOCKing (HADDOCK) [24] between the structures shown in Figures 1 and 3. HIF-1 protein (blue) with DNA (gold); hypoxia-response element (HRE) recognized (olive green).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6470671583f1392090d68c9c/j_abm-2018-0027_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T065430Z&X-Amz-Expires=3600&X-Amz-Signature=f3dbb92cb0de2a095f95b5bbeb5e888e5c042146bcee6ed60a89d29606529528&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7
![2D schematic representation of DNA–protein contacts observed in the hypoxia-inducible factor 1 (HIF-1) DNA-binding domain using NUCPLOT (version 1.0) [26]. The aryl receptor nuclear translocator (ARNT) subunit corresponds to amino acid residues 1–59, and HIF-1a subunit corresponds to residues 60–116 (or 1–57, arbitrary numbering). Left, G allele–HIF-1 contacts; right, A allele–HIF-1 contacts. C, cytosine brown; A, adenine magenta; T, thymine blue; G, guanine green. (B) indicates the amino acid acting as a ligand, and * indicates strong bonding between amino acids and nucleotides (either favorable or unfavorable contact).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6470671583f1392090d68c9c/j_abm-2018-0027_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T065430Z&X-Amz-Expires=3600&X-Amz-Signature=445655c2cfd221ab94af411601e71a536936f10ff7728cff42ef2949c8dda20b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 8
![Visualization of hypoxia-inducible factor 1 (HIF-1)–hypoxia-response element DNA at the 8th nucleotide, guanine in G allele (A) and adenine in A allele (B) using LIGPLOT [27] with LigPlot+ (version 2.1) [28]. Here, the G allele (guanine) contacts arginine (Arg) 75 favorably. By contrast, the A allele (adenine) makes less favorable contact with Arg 75. Color key to atoms: carbon, black; nitrogen, blue; oxygen, magenta; phosphorous, purple.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6470671583f1392090d68c9c/j_abm-2018-0027_fig_008.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T065430Z&X-Amz-Expires=3600&X-Amz-Signature=92da588db374c01271d998a07a30e81edf4dafd5fb2ff9324815c82a3755ba9e&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Protein–DNA contacts (hydrogen bonds) in the hypoxia-inducible factor 1 (HIF-1) DNA-binding domain complex observed in LIGPLOT [27] and NUCPLOT [26]_
| Donor | Acceptor | Distance (Å) |
|---|---|---|
| Hydrogen bonds – G allele | ||
| Arg 63 NH1 | A5 O2P | 2.82 |
| Arg 63 NH2 | A5 O2P | 2.82 |
| Ser 67 OG | G6 O2P | 2.70 |
| Lys 42 NZ | C7 O1P | 2.86 |
| Arg 74 NH2 | C7 O5′ | 2.65 |
| Arg 74 NH2 | G8 O1P | 2.65 |
| Arg 75 NH2 | G8 O2P | 2.68 |
| Arg 75 NH1 | G8 O1P | 2.98 |
| Arg 16 NH1 | T9 O5′ | 2.94 |
| His 8 NE2 | G10 O2P | 2.88 |
| Arg 16 NH2 | G10 O2P | 2.73 |
| Arg 5 NH1 | A11 O2P | 2.74 |
| Arg 2 NH1 | G12 O2P | 2.77 |
| Arg 5 NH2 | G12 N7 | 2.87 |
| Glu 1N | A16 O2P | 2.79 |
| Glu 1N | A16 O1P | 2.72 |
| Arg 68 NH2 | T20 O5′ | 3.00 |
| Arg 68 NE | C21 O2P | 2.68 |
| Lys 64 NZ | C21 O5′ | 2.80 |
| Lys 39 NZ | G27 O5′ | 2.83 |
| Hydrogen bonds – A allele | ||
| Arg 68 NH2 | G6 O2P | 2.94 |
| Ser 67 OG | C7 O1P | 2.87 |
| Arg 72 NH1 | C7 O2P | 2.75 |
| Arg 72 NH2 | A8 O2P | 2.64 |
| Arg 75 NH2 | A8 O1P | 2.66 |
| Arg 75 NH1 | A8 O2P | 2.72 |
| His 8 NE2 | G10 O1P | 2.77 |
| Arg 15 NH2 | G10 O2P | 2.72 |
| Tyr 83 OH | C19 O3′ | 2.86 |
| Arg 2 NH2 | C25 O2P | 2.75 |
| Arg 2 NH1 | C25 O5′ | 2.67 |
| Arg 5 NH2 | T26 O3′ | 2.86 |
| Lys 64 NZ | G28 O1P | 2.64 |
| Ser 60 OG | G29 O5′ | 2.84 |