Have a personal or library account? Click to login
Variability of Water Flow in the Hyporheic Corridor: A Case Study of the Warta Valley in Poznań Cover

Variability of Water Flow in the Hyporheic Corridor: A Case Study of the Warta Valley in Poznań

Open Access
|Jul 2025

References

  1. Alley W.M., Healy R.W., LaBaugh J.W., Reilly T.W., 2002. Flow and storage in groundwater systems. Science 296(5575): 1985–1990. DOI 10.1126/science.1067123.
  2. Bajkiewicz-Grabowska E., 2020. Hydrologia ogólna (Basic Hydrology). Wyd. PWN, Warszawa.
  3. Boulton A., Findlay S., Marmonier P., Stanley E., Vallet M., 1998. Thefunctional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81. DOI 10.1146/annurev.ecolsys.29.1.59.
  4. Cardenas M.B., 2009. A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resources Research 45: W01501. DOI 10.1029/2008WR007442.
  5. Choiński A. (red.), 2019. Wody Wielkopolski (Waters of the Wielkopolska Region). Wyd. Uniwersytet im. A. Mickiewicza w Poznaniu, Poznań.
  6. Dahl M., Nilsson B., Langhoff J.L., Refsgaard J.C., 2007. Review of classification systems and new multi-scale typology of groundwater-surface water interaction. Journal of Hydrology 344: 1–16. DOI 10.1016/j.jhydrol.2007.06.027.
  7. Dowgiałło J., Kleczkowski A.S., Macioszczyk T., Różkowski A., 2002. Słownik hydrogeologiczny (Hydrogeological Dictionary). Wyd. Państwowy Instytut Geologiczny – PIB, Warszawa.
  8. Harvey J., Gooseff M., 2015. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research 51: 6893–6922. DOI 10.1002/2015WR017617.
  9. Jekatierynczuk-Rudczyk E., Puczko K., Żukowska J., Sawicka A. (red.), 2021. Biota communities influence on nutrients circulation in hyporheic zone – A case study in urban spring niches in Bialystok (NE Poland). Aquatic Sciences 83: 75. DOI 10.1007/s00027-021-00831-6.
  10. Kowalski J., 1998. Hydrogeologia z podstawami geologii (Hydrogeology and the Basics of Geology). Wyd. AR we Wrocławiu, Wrocław.
  11. Krause S., Hannah D., Fleckenstein J.H., Heppell C.M., Kaeser D., Pickup R., Pinay G., Robertson A.L., Wood P.J., 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4(4): 481–499. DOI 10.1002/eco.176.
  12. Lerner D.N., Smith J., Hannah D., Krause S., Lawler D., Pickup R., 2009. The hyporheic handbook: A handbook on the groundwater-surface water interface and hyporheic zone for environment managers. Integrated catchment science programme. Science report UK Environment Agency, No. SC050070. Environment Agency.
  13. Lewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C., Drummond J.D., Gaona Garcia J., Galloway J., Gomez-Velez J., Grabowski R.C., Herzog S.P., Hinkelmann R., Höhne A., Hollender J., Horn M.A., Jaeger A., Krause S., Löchner Prats A., Magliozzi C., Meinikmann K., Mojarrad B.B., Mueller B.M., Peralta-Maraver I., Popp A.L., Posselt M., Putschew A., Radke M., Raza M., Riml J., Robertson A., Rutere C., Schaper J.L., Schirmer M., Schulz H., Shanafield M., Singh T., Ward A.S., Wolke P., Wörman A., Wu L., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11(11): 2230. DOI 10.3390/w11112230.
  14. Marciniak M., 1999. Identyfikacja parametrów hydrogeologicznych na podstawie skokowej zmiany potencjału hydraulicznego. Metoda PARAMEX. (Identification of hydrogeological parameters based on a rapid change in hydraulic potential. The PARAMEX method). Wyd. Nauk. UAM, Poznań.
  15. Marciniak M., Ziułkiewicz M., Górecki M., 2022. Variability of water exchange in the hyporheic zone of a lowland riverin Poland based on gradientometric studies. Quaestiones Geographicae 41(3): 141–156. DOI 10.2478/quageo-2022-0030.
  16. Naegeli M.W., Uehlinger U., 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed-river. Journal of the North American Benthological Society 16: 794–804. DOI 10.2307/1468172.
  17. Obidziński A. (ed.), 2018. Inwentaryzacja i waloryzacja przyrodnicza. Metody naziemne i geomatyczne (Inventory and natural valorization. Ground-based and geomatic methods). Wydawnictwo SGGW, Warszawa.
  18. Okońska M., Brzezińska W., 2024. Obserwacje wód powierzchniowych i podziemnych na posterunku hydrologicznym w dolinie Warty w Poznaniu (Observations of Surface Water and Groundwater at the Hydrological Station in the Warta Valley in Poznań). In: Wrzesiński D., Graf R., Brzezińska W. (eds), Naturalne i antropogeniczne zmiany obiegu wody. Uwarunkowania środowiskowe. Studia i Prace z Geografii 99. Bogucki Wydawnictwo Naukowe, Poznań: 57–72.
  19. Orghidan T., 1959. Ein neuer Lebensraume des unterirdischen Wassers: Der hyporheische Biotop. Archive für Hydrobiologie 55: 392–414.
  20. Pacioglu O., 2010. Ecology of the hyporheic zone: a review. Cave and Karst Science 36(3): 69–76.
  21. Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., kistowski M., 2021. Regionalna geografia fizyczna Polski (Regional Physical Geography of Poland). Bogucki Wydawnictwo Naukowe, Poznań.
  22. Smith J.W.N., 2005. Groundwater – surface water interactions in the hyporheic zone. Environment Agency Science report SC030155/1. Environment Agency, Bristol, Uk.
  23. Smith J.W.N., Bonell M., Gibert J., McDowell W.H., Sudicky E.A., Turner J.V., Harris R.C., 2008. Groundwater – Surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management. Hydrological Processes 22: 151–157. DOI 10.1002/hyp.6902.
  24. Stanford J., Ward J.V., 1993. An ecosystem perspective of alluvial rivers: Connectivity and the Hyporheic Corridor. Journal of the North American Benthological Society 12: 48– 60. DOI 10.2307/1467685.
  25. Staśko S., Olichwer T., 2005. Wody podziemne w dolinach rzecznych i ich znaczenie w systemie wodnym (Groundwater in river valleys and its importance in the water system). In: Tomialojć L., Drabiński A. (eds), Środowiskowe aspekty gospodarki wodnej. Komitet Ochrony Przyrody PAN, Wydział Inżynierii Kształtowania Środowiska i Geodezji AR we Wrocławiu, Wrocław: 179–189.
  26. Stegen J.C., Johnson T., Fredrickson J.K., Wilkins M.J., konopka A.E., Nelson W.C., Arntzen E.V., Chrisler W.B., Chu R.K., Fansler S.J., Graham E.B., Kennedy D.W., Resch C.T., Tfaily M., Zachara J., 2018. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications 9: 585. DOI 10.1038/s41467-018-02922-9.
  27. Van Loon A.F., 2015. Hydrological drought explained. Wiley Interdisciplinary Reviews Water 2(4): 359–392. DOI10.1002/wat2.1085.
  28. Wen Z., Liu H., Rezanezhad F., Krause S., 2024. Advancement and perspectives of hyporheic zone hydrology: Technology, theory and environmental implication. Journal of Hydrology 630: 130721. DOI 10.1016/j.jhydro.2024.130721.
  29. Williams G.P., 1986. River meanders and channel size. Journal of Hydrology 88(1–2): 147–164. DOI 10.1016/0022-1694(86)90202-7.
  30. Winter T.C., Harvey J.W., Franke O.L., Alley W.M., 1998. Ground water and surface water. A single resource. US Geological Survey Circular 1139, Denver, CO, USA. DOI10.3133/cir1139.
  31. Wrzesiński D., Perz A., 2016. Cechy reżimu odpływu rzek w zlewni Warty (Characteristics of the river discharge regime in the Warta River Basin). Badania Fizjograficzne nad Polską Zachodnią Seria A – Geografia Fizyczna 67: 289–304. DOI 10.14746/bfg.2016.7.21.
  32. Wu L., Gomez-Velez J.D., Li L., Carroll K.C., 2024. The fragility of bedform-induced hyporheic zones: Exploring impacts of dynamic groundwater table fluctuations. Water Resources Research 60: e2023WR036706. DOI10.1029/2023WR036706.
  33. PN-EN ISO 14688-2:2018-05P Rozpoznanie i badania geotechniczneOznaczanie i klasyfikowanie gruntówCzęść 2: Zasady klasyfikowania (Geotechnical investigation and testing — Identification and classification of soil — Part 2: Principles for a classification).
  34. PN-B-02480:1986 Grunty budowlaneOkreślenia, symbole, podział i opis gruntów (Structural ground—Terms, symbols, division and description of soils).
  35. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Online:data.europa.eu/eli/dir/1991/676/oj (accessed 25 March 2025).
  36. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Online: data.europa.eu/eli/dir/2000/60/oj (accessed 25 March 2025).
  37. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Online:data.europa.eu/eli/dir/2006/118/oj (accessed 25 March 2025).
  38. Hydrological yearbook, 2023. Rocznik hydrologiczny 2023. Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy. Online: danepubliczne.imgw.pl/(accessed September 2024).
DOI: https://doi.org/10.14746/quageo-2025-0030 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 63 - 75
Submitted on: Feb 6, 2025
Published on: Jul 25, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Monika Okońska, Filip Wolny, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.