Have a personal or library account? Click to login
Erosion Control Ecosystem Service Provided by Salix Acutifolia Willd. Neophyte on the South Baltic Coast: Insights from Wolin Island, Poland Cover

Erosion Control Ecosystem Service Provided by Salix Acutifolia Willd. Neophyte on the South Baltic Coast: Insights from Wolin Island, Poland

Open Access
|Jun 2024

References

  1. Act, 1991. Act of March 21, 1991 on maritime areas of Poland and maritime administration. J. Law 1991.32.131.
  2. Act 2021. Act of August 11, 2021 on invasive species. J. Law 2021.1718.
  3. Arias P.A., Belloui N., Coppola E., Jones R.G., Krinner G., Marotzke J., et al., 2021. Technical summary. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., et al., (eds), Climate change 2021. The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 33–144. DOI 10.1017/9781009157896.002.
  4. Błaszczak E., 1979. Introduction of Salix acutifolia to dune formations using the vegetative propagation by laying the shoots horizontally. Library of Wolin National Park, Wolin (unpublished).
  5. Borysiak J., 2022. Adaptacyjne strategie roślin naczyniowych klifu wybrzeża Bałtyku Południowego w Wolińskim Parku Narodowym. In: Kostrzewski A., Szpikowski J., Majewski M., (eds), Zintegrowany Monitoring Środowiska Przyrodniczego. Współczesne przemiany naturalne i antropogeniczne środowiska przyrodniczego zlewni rzecznych i jeziornych. Biblioteka Monitoringu Środowiska 32. Bogucki Wydawnictwo Naukowe, Poznań: 216–227. DOI 10.12657/9788379864485-17.
  6. Borysiak J., Pleskot K., Rachlewicz G., 2020. Dryas aeolian landforms in Arctic deflationary tundra, central Spitsbergen. Polish Polar Research 41: 41–68. DOI 10.24425/ppr.2020.132569.
  7. Borzyszkowski J., Grzegorczyk I., Walczak M., 2021. Pobrzeże Szczecińskie (313, 2–3). In: Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M. (eds), Regionalna geografia fizyczna Polski. Bogucki Wydawnictwo Naukowe, Poznań: 71–85.
  8. Charbonneau B.R., Wootton L.S., Wnek J.P., Langley J.A., Posner M.A., 2017. A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during hurricane sandy. Journal of Applied Ecology 54: 1385–1394. DOI 10.1111/1365-2664.12846.
  9. El-Bana M.I., Nijs I., Khedr A.-H.A., 2003. The importance of phytogenic mounds (Nebkhas) for restoration of arid degraded rangelands in Northern Sinai. Restoration Ecology 11: 317–324. DOI 10.1046/j.1526-100X.2003.00222.x.
  10. El-Bana M.I., Nijs I., Kockelbergh F., 2002. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an arid coastal ecosystem. Plant and Soil 247: 283–293. DOI 10.1023/A:1021548711206.
  11. EuroGeographics for the administrative boundaries, 2024. Administrative Units/Statistical Units. Online: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units (accessed 26 March 2024).
  12. European Commission, 2011. Our life insurance, our natural capital: an EU biodiversity strategy to 2020. COM(2011) 244 final. Online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0244 (accessed 15 January 2024).
  13. European Commission, 2021. EU biodiversity strategy for 2030 – Bringing nature back into our lives. Publications Office of the European Union. Online: https://data.europa.eu/doi/10.2779/677548 (accessed 15 January 2024).
  14. European Environment Agency, 2019. The reference list on threats, pressures and activities is in accordance with the codelist. Online: https://cdr.eionet.europa.eu/help/natura2000 (accessed 15 January 2024).
  15. Everard M., Jones L., Watts B., 2010. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 476–487. DOI 10.1002/aqc.1114.
  16. Fałtynowicz W., 2018. Materials to the lichen biota of Western Pomerania (Northern Poland). Part. 3. Lichens along the shore of the Baltic Sea. Steciana 22: 143–152. DOI 10.12657/steciana.022.017.
  17. Feagin R.A., Figlus J., Zinnert J.C., Sigren J., Martínez M.L., Silva R., et al., 2015. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Frontiers in Ecology and the Environment 13: 203–210. DOI 10.1890/140218.
  18. Gilbert M.E., Ripley B.S., 2010. Resolving the differences in plant burial responses. Austral Ecology 35: 53–59. DOI 10.1111/j.1442-9993.2009.02011.x.
  19. Goudie A.S., 2022. Nebkhas: An essay in aeolian biogeomorphology. Aeolian Research 54: 100772. DOI 10.1016/j. aeolia.2022.100772.
  20. Gracia A., Rangel-Buitrago N., Oakley J.A., Williams A.T., 2018. Use of ecosystems in coastal erosion management. Ocean & Coastal Management 156: 277–289. DOI 10.1016/j. ocecoaman.2017.07.009.
  21. Hacker S.D., Zarnetske P., Seabloom E., Ruggiero P., Mull J., Gerrity Jones C., 2012. Subtle differences in two non-native congeneric beach grasses significantly affect their colonization, spread, and impact. Oikos 121: 138–148. DOI 10.1111/j.1600-0706.2011.18887.x.
  22. Haines-Young R., Potschin M., 2018. Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the Application of the Revised Structure. Online: www.cices.eu (accessed 15 January 2024).
  23. Hanley M.E., Hoggart S.P.G., Simmonds D.J., Bichot A., Colangelo M.A., Bozzeda F., et al., 2014. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coastal Engineering 87: 136–146. DOI 10.1016/j.coastaleng.2013.10.020.
  24. Hein L., van Koppen K., de Groot R.S., van Ierland E.C., 2006. Spatial scales, stakeholders and the valuation of ecosystem services. Ecological Economics 57: 209–228. DOI 10.1016/j.ecolecon.2005.04.005.
  25. Herbich J., 2004 (Ed.). Poradniki ochrony siedlisk i gatunków Natura 2000 – podręcznik metodyczny, 1–3, 5. Online: https://natura2000.gdos.gov.pl/wytyczne-i-poradniki (accessed 15 January 2024).
  26. Herbich J., Warzocha J., 1998. Introduction to the marine and coastal environment of Poland. Red List of Marine and Coastal Biotopes and Biotopes Complexes of the Baltic Sea, Belt Sea and Kattegat. Baltic Sea Environment Proceedings 75: 47–51.
  27. Hojan M., 2009. Aeolian processes on the cliffs of Wolin Island. Quaestiones Geographicae 28A: 39–46.
  28. IPCC, 2021. Summary for policymakers. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., et al., (eds), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 3–32. DOI 10.1017/9781009157896.001.
  29. Keijsers J.G.S., De Groot A.V., Riksen M.J.P.M., 2015. Vegetation and sedimentation on coastal foredunes. Geomorphology 228: 723–734. DOI 10.1016/J.GEO-MORPH.2014.10.027.
  30. Kostrzewski A., Zwoliński Z., Winowski M., Tylkowski J., Samołyk M., 2015. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Sounthern Baltic). Baltica 28(2): 109–120. DOI 10.5200/baltica.2015.28.10.
  31. Łabuz T.A., 2013. Polish coastal dunes – affecting factors and morphology. Landform Analysis 22: 33–59. DOI 10.12657/landfana.022.004.
  32. Łabuz T.A., Grunewald R., Bobykina V., Chubarenko B.V., Česnulevičius A., Bautrėnas A., et al., 2018. Coastal dunes of the Baltic Sea shores: A review. Quaestiones Geographicae 37: 47–71. DOI 10.2478/quageo-2018-0005.
  33. Lavaine C., Evette A., Piégay H., 2015. European Tamaricaceae in bioengineering on dry soils. Environmental Management 56: 221–232. DOI 10.1007/s00267-015-0499-8.
  34. Li J., Zhao C., Zhu H., Li Y., Wang F., 2007. Effect of plant species on shrub fertile island at an oasis–desert ecotone in the South Junggar Basin, China. Journal of Arid Environments 71: 350–361. DOI 10.1016/j.jaridenv.2007.03.015.
  35. Łukasiewicz A., 1962. Morfologiczno–rozwojowe typy bylin (Morphological and developmental types of perennial). Prace Komisji Biologicznej 27. Państwowe Wydawnictwo Naukowe, Poznań.
  36. Matuszkiewicz W., 2022. Przewodnik do oznaczania zbiorowisk roślinnych Polski (A manual to identifying plant communities in Poland). Wydawnictwo Naukowe PWN, Warszawa.
  37. Mentaschi L., Vousdoukas M.I., Pekel J.F., Voukouvalas E., Feyen L., 2018. Global long-term observations of coastal erosion and accretion. Scientific Reports 8: 12876. DOI 10.1038/s41598-018-30904-w.
  38. Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M., 2020. Vascular plants of Poland: An annotated checklist. Szafer Institute of Botany, Polish Academy of Science, Kraków.
  39. Mycielska-Dowgiałło E., Dłużewski M., Dubis L., Woronko B., 2008. Extorted forms of aeolian accumulation in the Coude du Dra Region. Prace Geograficzne 118: 65–78.
  40. Nordstrom K.F., 2000. Beaches and dunes of development coasts. Cambridge University Press, Cambridge.
  41. Olšauskas A.M., 2009. Woody and grassy vegetation development in different landscape elements of the Curonian Spit. Environmental Research, Engineering and Management 4: 30–36.
  42. OpenStreetMap Contributors, 2024. OpenStreetMap Data. Online: https://www.openstreetmap.org/(accessed 26 March 2024).
  43. Pool M.R., Pool S.K., Parvaneh I., Dehghani Z., Rostamian M., 2013. Nebkhas of Salvadora persica and their effect on the growth and survival of Prosopis cineraria, Tamarix aphylla, and Capparis decidua trees and shrubs. Flora 208: 502–507. DOI 10.1016/j.flora.2013.07.010.
  44. Popiela A., Łysko A., Sotek Z., Ziarnek K., 2015. Preliminary results of studies on the distribution of invasive alien vascular plant species occurring in semi-natural and natural habitats in NW Poland. Biodiversity: Research and Conservation 37: 21–35. DOI 10.1515/biorc-2015-0003.
  45. Pruszak Z., Zawadzka E., 2008. Potential implications of sea-level rise for Poland. Journal of Coastal Research 24: 410–422. DOI 10.2112/07A-0014.1.
  46. Quets J.J., Temmerman S., El-Bana M.I., Al-Rowaily S.L., Assaeed A.M., Nijs I., 2013. Unraveling landscapes with phytogenic mounds (nebkhas): An exploration of spatial pattern. Acta Oecologica 49: 53–63. DOI 10.1016/j.actao.2013.03.002.
  47. Rahmanov O., Skreczko S., Rahmonov M., 2021. Changes in soil features and phytomass during vegetation succession in sandy areas. Land 10: 265. DOI 10.3390/land10030265.
  48. Rahmanov O., Snytko V.A., Szczypek T., 2009. Formation of phytogenic hillocks in Southern Poland. Geography and Natural Resources 30: 399–402. DOI 10.1016/j. gnr.2009.11.017.
  49. Rahmonov O., Rzetala M., Rahmonov M., Kozyreva E., Jagus A., Rzetala M., 2011. The formation of soil chemistry and the development of fertility islands under plant canopies in sandy areas. Research Journal of Chemistry and Environment 15: 823–829.
  50. Regulation 2014. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. OJ L 317, 4.11.2014, 35–55.
  51. Regulation, 2016. Regulation No. 4 of the Director of the Maritime Office in Szczecin of August 3, 2016 amending the ordinance on defining the limits of the technical belt in the Międzyzdroje commune. Online: http://e-dziennik. szczecin.uw.gov.pl/WDU_Z/2016/3173/oryginal/akt. pdf (accessed 15 January 2024).
  52. Schernewski G., Voeckler L.N., Lambrecht L., Robbe E., Schumacher J., 2022. Building with nature — ecosystem service assessment of coastal-protection scenarios. Sustainability 14: 15737. DOI 10.3390/su142315737.
  53. Science, 2015. Science for Environment Policy. Ecosystem Services and the Environment. In-depth Report 11 produced for the European Commission, DG Environment by the Science Communication Unit, UWE, Bristol. Online: http://ec.europa.eu/science-environment-policy (accessed 15 January 2024).
  54. Seneta W., Dolatowski J., Zieliński J., 2021. Dendrologia. Wydawnictwo Naukowe PWN, Warszawa.
  55. Tylkowski J., Paluszkiewicz R., Winowski M., Czyryca P., Kostrzewski A., Mazurek M., Rachlewicz G. 2023a. Effects of geomorphological processes and phytoclimate conditions change on forest vegetation in the Pomeranian Bay coastal zone (Wolin National Park, West Pomerania). Quaestiones Geographicae 42: 141–160. DOI 10.14746/quageo-2023-0010.
  56. Tylkowski J., Czyryca P., Winowski M., Kostrzewski A., 2023b. Raport z realizacji programu badawczo-pomiarowego ZMŚP w Stacji Bazowej Wolin w 2022 roku. Uniwersytet im. A. Mickiewicza w Poznaniu, Stacja Monitoringu Środowiska Przyrodniczego w Białej Górze.
  57. Tylkowski J., Samołyk M., Czyryca P., Winowski M., 2018. Raport z realizacji programu badawczo-pomiarowego ZMŚP w Stacji Bazowej Wolin w 2017 roku. Uniwersytet im. A. Mickiewicza w Poznaniu, Stacja Monitoringu Środowiska Przyrodniczego w Białej Górze.
  58. Tylkowski J., Winowski M., Hojan M., Czyryca P., Samołyk M., 2021. Influence of hydrometeorological hazards and sea coast morphodynamics on development of Cephalanthero rubrae-Fagetum (Wolin Island, the Southern Baltic Sea). Natural Hazards and Earth System Sciences 21: 363–374. DOI 10.5194/nhess-21-363-2021.
  59. Van der Biest K., De Nocker L., Provoost S., Boerema A., Staes J., Meire P., 2017. Dune dynamics safeguard ecosystem services. Ocean & Coastal Management 149: 148–158. DOI 10.1016/j.ocecoaman.2017.10.005.
  60. Wang X., Wang T., Dong Z., Liu X., Qian G., 2006. Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. Journal of Arid Environments 65: 129–141. DOI 10.1016/j.jaridenv.2005.06.030.
  61. Weeda E.J., 2010. The role of archaeophytes and neophytes in the Dutch coastal dunes. Journal of Coastal Conservation 14: 75–79. DOI 10.1007/s11852-009-0079-2.
  62. Winowski M., Tylkowski J., Hojan M., 2022. Assessment of moraine cliff spatio-temporal erosion on Wolin Island using ALS data analysis. Remote Sensing 14: 3115. DOI 10.3390/rs14133115.
  63. Yang H., Li X., Liu L., Gao Y., Li G., Jia R., 2014. Soil water repellency and influencing factors of Nitraria tangutorum nebkhas at different succession stages. Journal of Arid Land 6: 300–310. DOI 10.1007/s40333-013-0199-2.
  64. Zhang P., Yang J., Zhao L., Bao S., Song B., 2011. Effect of Caragana tibetica nebkhas on sand entrapment and fertile islands in steppe-desert ecotones on the Inner Mongolia Plateau, China. Plant Soil 347: 79–90. DOI 10.1007/s11104-011-0813-z.
  65. Zhao M., Zhan K.J., Qiu G.Y., Fang E.T., Yang Z.H., Zhang Y.C., Li A.D., 2011. Experimental investigation of the height profile of sand-dust fluxes in the 0-50-m layer and the effects of vegetation on dust reduction. Environmental Earth Science 62: 403–410. DOI 10.1007/s12665-010-0535-1.
  66. Zhou H., Zhao W.Z., Luo W.C., 2015. Species diversity and vegetation distribution in nebkhas of Nitraria tangutorum in the desert steppes of China. Ecological Research 30: 735–744. DOI 10.1007/s11284-015-1277-z.
  67. Ziarnek K., Ziarnek M., 2013. Draft conservation plan 2014-2033 for Wolin National Park. Directorate of Wolin National Park, Wolin (unpublished).
  68. Žilinskas G., 2008. Distinguishing priority sectors for the Lithuanian Baltic Sea coastal management. Baltica 21: 85–94.
DOI: https://doi.org/10.14746/quageo-2024-0023 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 5 - 19
Submitted on: Jan 17, 2024
Published on: Jun 26, 2024
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2024 Janina Borysiak, Paweł Czyryca, Małgorzata Stępniewska, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.