Have a personal or library account? Click to login
European Funds and the Dynamics of Economic Growth Among Eu Regions: A Spatial Modelling Approach Cover

European Funds and the Dynamics of Economic Growth Among Eu Regions: A Spatial Modelling Approach

Open Access
|Jun 2024

Figures & Tables

Results of conditional β-convergence modelling in a spatial approach with the use of an SDM form_

Weights matrix →W1 (contiguity)W2 (distance)W3 (flow)W4 (block)
Variable ↓Coeff.Prob.Coeff.Prob.Coeff.Prob.Coeff.Prob.
LAG_LN_Y0.5000.0000−0.9030.00000.2780.00350.6510.0000
CONSTANT0.8260.00011.9300.00041.8770.00000.5620.0086
LN_EU_FUNDS−0.0060.30500.0030.58010.0070.28380.0060.1957
LN_GDPpc07−0.0060.6663−0.0430.0048−0.0280.0716−0.0050.6844
LN_INVEST0.1260.00000.1550.00000.1280.00000.0980.0000
LN_LABOR0.6060.00130.5160.01530.4950.02860.5150.0018
LN_INNOV0.1020.00280.1020.00540.0650.13550.0760.0505
LAG_LN_GDPpc07−0.0740.0003−0.1700.0007−0.1560.0000−0.0490.0188
LAG_LN_EU_FUNDS0.0130.06960.0710.00000.0080.4339−0.0020.8243
LAG_LN_INVEST0.0300.25330.5390.00000.1670.00000.0180.5068
LAG_LN_LABOR−0.3870.0699−0.0990.91040.2830.5247−0.6180.0058
LAG_LN_INNOV−0.0910.05200.2000.1080−0.0030.9701−0.0790.0923
Pseudo R20.8280.7810.7950.865
Log likelihood367.079348.556357.995394.95
AIC−710.159−673.112−691.99−765.901

Results of conditional β-convergence modelling in a spatial approach with the use of a SAR form_

Weights matrix →W1 (contiguity)W2 (distance)W3 (flow)W4 (block)
Variable ↓Coeff.Prob.Coeff.Prob.Coeff.Prob.Coeff.Prob.
LAG_LN_Y0.4950.00000.6220.00000.5730.00000.5820.0000
CONSTANT0.5080.00090.8040.00000.3070.03310.2860.0456
LN_GDPpc07−0.0490.0002−0.0850.0000−0.0330.0097−0.0300.0154
LN_EU_FUNDS0.0090.04230.0150.00240.0110.00550.0130.0008
LN_INVEST0.1620.00000.2090.00000.1140.00000.1300.0000
LN_LABOR0.4000.02530.4140.04240.5220.00140.4010.0155
LN_INNOV0.0760.00100.1220.00030.0440.01080.0550.0499
Pseudo R20.7880.7220.8020.818
Log likelihood344.738317.553354.265367.000
AIC−675.475−621.107−694.53−720.001

Results of conditional β-convergence modelling with the classic OLS method_

VariableCoefficientStd. Errort-StatisticProbability
CONSTANT1.0680.1835.8250.0000
LN_GDPpc07−0.1020.016−6.4030.0000
LN_EU_FUNDS0.0140.0052.6750.0080
LN_INVEST0.2630.01517.0170.0000
LN_LABOR0.4830.2212.1790.0302
LN_INNOV0.0970.0362.6590.0083
Regression diagnostics
R2 = 0.681JB test = 56.92 ( p = 0.0000)
Log likelihood = 300.256BP test = 10.07 ( p = 0.0773)
AIC = -588.513KB test = 4.23 ( p = 0.5160)
Diagnostics for spatial dependence:Moran’s ILagrange Multiplier tests
W1 matrix (contiguity)0.2740 (p = 0.0000)LM(SAR) > LM(SEM)RLM(SAR) > RLM(SEM)
W2 matrix (distance)0.1201 (p = 0.0000)LM(SAR) > LM(SEM)RLM(SAR) > RLM(SEM)
W3 matrix (flows)0.2557 (p = 0.0000)LM(SAR) > LM(SEM)RLM(SAR) > RLM(SEM)
W4 matrix (block)0.3451 (p = 0.0000)LM(SAR) > LM(SEM)RLM(SAR) > RLM(SEM)
DOI: https://doi.org/10.14746/quageo-2024-0020 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 67 - 80
Submitted on: Feb 11, 2024
|
Published on: Jun 21, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2024 Wojciech Kisiała, Bartosz Stępiński, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.