Have a personal or library account? Click to login
Insights into the Chemical Characteristics of Atmospheric Aerosols from Urban-Industrial and Rural Sites in South-East of Poland During Winter Cover

Insights into the Chemical Characteristics of Atmospheric Aerosols from Urban-Industrial and Rural Sites in South-East of Poland During Winter

Open Access
|Sep 2023

References

  1. Arndt J., Deboudt K., Anderson A., Blondel A., Eliet S., Flament P., Fourmentin M., Healy R.M., Savary V., Setyan A., Wenger J.C., 2016. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions. Environmental Pollution 210: 9–17. DOI 10.1016/j.envpol.2015.11.019.
  2. Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.-P., 2010. Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmospheric Measurement Techniques 3: 79–89. DOI 10.5194/amt-3-79-2010.
  3. Cichowicz R., Wielgosiński G., Fetter W., 2017. Dispersion of atmospheric air pollution in summer and winter season. Environmental Monitoring and Assessment 189(12): 605. DOI 10.1007/S10661-017-6319-2.
  4. Eguiluz-Gracia I., Mathioudakis A.G., Bartel S., Vijverberg S.J.H., Fuertes E., Comberiati P., Cai Y.S., Tomazic P.V., Diamant Z., Vestbo J., Galan C., Hoffmann B., 2020. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 75(9): 2170–2184. DOI 10.1111/ALL.14177.
  5. Grivas G., Cheristanidis S., Chaloulakou A., Koutrakis P., Mihalopoulos N., 2012. Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece. Aerosols and Air Quality Reaserch 18(7): 1642–1659. DOI 10.4209/aaqr.2017.12.0567.
  6. GUS (Główny Urząd Statystyczny). Online: https://stat.gov.pl/ (accessed 23 June 2022).
  7. Jóźwiak M.A., Jóźwiak M., 2009. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecological Chemistry and Engineering S 16(3): 323–334.
  8. Kampa M., Castanas E., 2008. Human health effects of air pollution. Environmental Pollution 151(2): 362–367. DOI 10.1016/j.envpol.2007.06.012.
  9. Kim K.W., He Z., Kim Y., 2004. Physicochemical characteristics and radiative properties of Asian dust particles observed at Kwangju, Korea, during the 2001 ACE-Asia intensive observation period. Journal of Geophysical Research 109: 1–15. DOI 10.1029/2003JD003693.
  10. Kozłowski R., 2013. Funkcjonowanie wybranych geoekosystemów Polski w warunkach zróżnicowanej antropopresji na przykładzie gór niskich i pogórza. Landform Analysis 23: 1–150.
  11. Kozłowski R., Szwed M., Żukowski R., 2019. Pine needles as bioindicator of pollution by trace elements from cement-limestone industry in centraleastern Poland. Carpathian Journal of Earth and Environmental Sciences 14: 541–549. DOI 10.26471/cjees/2019/014/102.
  12. Liu H., Yan Y., Chang H., Chen H., Liang L., Liu X., Qiang X., Sun Y., 2019. Magnetic signatures of natural and anthropogenic sources of urban dust aerosol. Atmospheric Chemistry Physics 19: 731–745. DOI 10.5194/ACP-19-731-2019.
  13. Mbengue S., Alleman L.Y., Flament P., 2014. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmospheric Research 135–136: 35–47. DOI 10.1016/j.atmosres.2013.08.010.
  14. Mbengue S., Alleman L.Y., Flament P., 2017. Metal-bearing fine particle sources in a coastal industrialized environment. Atmospheric Research 183: 202–211. DOI 10.1016/j.atmosres.2016.08.014.
  15. Mbengue S., Alleman L.Y., Pascal F., 2015. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environmental Geochemistry and Health 35: 875–889. DOI 10.1007/s10653-015-9756-2.
  16. Mbengue S., Fusek M., Schwarz J., Vodička P., Šmejkalová A.H., Holoubek I., 2018. Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe. Atmospheric Environment 182: 335–346.
  17. Obwieszczenie Ministra Klimatu i Środowiska z dnia 12 kwietnia 2021 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Środowiska w sprawie poziomów niektórych substancji w powietrzu, 2021. Dziennik Ustaw poz.845.
  18. Paraschiv L.S., Serban A., Paraschiv S., 2019. Calculation of combustion air required for burning solid fuels (coal/biomass/solid waste) and analysis of flue gas composition. Energy Reports 6: 36–45. DOI 10.1016/j.egyr.2019.10.016.
  19. PCA [Polskie Centrum Akredytacji], 2021. Zakres akredytacji laboratorium badawczego nr AB 1622, Polskie Centrum Akredytacji, Warszawa. Online: https://lmr.ujk.edu.pl/files/Z_AB%201622_zakres_30.08.2021.pdf (accessed 23 June 2022).
  20. Peel J., Haeuber R., Garcia V., Russell A., Neas L., 2012. Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry 114: 121–134. DOI 10.1007/s10533-012-9782-4.
  21. Rolph G., Stein A., Stunder B., 2017. Real-time environmental applications and display system: READY. Environmental Modelling and Software 95: 210–228. DOI 10.1016/j.env-soft.2017.06.025.
  22. Rybiński P., Syrek B., Szwed M., Bradło D., Żukowski W., Marzec A., Śliwka-Kaszyńska M., 2021. Influence of thermal decomposition of wood and wood-based materials on the state of the atmospheric air. Emissions of toxic compounds and greenhouse gases. Energies 14(11): 3247. DOI 10.3390/en14113247.
  23. Seinfeld J.H., 2003. Tropospheric chemistry and composition: Aerosols/particles. Encyclopedia of Atmospheric Sciences 54: 2349–2354. DOI 10.1016/B978-0-12-382225-3.00438-2.
  24. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96: 2059–2077. DOI 10.1175/BAMS-D-14-00110.1.
  25. Szramowiat-Sala K., Styszko K., Kistler M., Kasper-Giebl A., Golas A., 2016. Carbonaceous species in atmospheric aerosols from the Krakow area (Malopolska District): Carbonaceous species dry deposition analysis. E3S Web of Conferences 10: 1-8. DOI 10.1051/e3sconf/20161000092.
  26. Szwed M., Kozłowski R., Żukowski W., 2020. Assessment of air quality in the south-western part of the Świętokrzyskie Mountains based on selected indicators. Forests 11(5): 499. DOI 10.3390/f11050499.
  27. Szwed M., Żukowski W., Kozłowski R., 2021. The presence of selected elements in the microscopic image of pine needles as an effect of cement and lime pressure within the region of Białe Zagłębie (Central Europe). Toxics 9(1): 15. DOI 10.3390/toxics9010015.
  28. Turpin B.J., Saxena P., Andrews E., 2000. Measuring and simulating particulate organics in the atmosphere: Problems and prospects. Atmospheric Environment 34(18): 2983– 3013. DOI 10.1016/S1352-2310(99)00501-4.
  29. WHO (World Health Organisation), 2021. Particulate matter (PM 2.5 and PM 10), ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. World Health Organisation. Online: https://apps.who.int/iris/handle/10665/345329 (accessed 23 June 2022).
DOI: https://doi.org/10.14746/quageo-2023-0025 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 89 - 99
Submitted on: Aug 16, 2022
|
Accepted on: Apr 22, 2023
|
Published on: Sep 7, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Mirosław Szwed, Rafał Kozłowski, Witold Żukowski, Saliou Mbengue, Lenka Suchánková, Roman Prokes, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.