Have a personal or library account? Click to login
Identifying potential groundwater recharge zones using the Analytic Hierarchy Process (AHP) method, in the Upper-Middle Drâa Basin, Morocco Cover

Identifying potential groundwater recharge zones using the Analytic Hierarchy Process (AHP) method, in the Upper-Middle Drâa Basin, Morocco

Open Access
|Dec 2025

References

  1. Agoussine M., El M., Saidi M. & Igmoullan B., 2004. Reconnaissance des ressources en eau du bassin d ’ Ouarzazate [Recognition of water resources in the Ouarzazate basin]. [In:] Lias sources and documents relating to the early modern history of ideas. 81–92 pp.
  2. Arulbalaji P., Padmalal D. & Sreelash K., 2019. GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Scientific Reports 9, 2082.
  3. Benchattou A. & El Ghachi M., 2024. Climate change projection and numerical climate modeling in the Rheris Watershed (Region Drâa Tafilalet – Morocco). [In:] Climate change effects and sustainability needs: The case of Morocco. Springer. 35–44 pp.
  4. Benvenuti M., Moratti G. & Algouti A., 2017. Stratigraphic and structural revision of the Upper Mesozoic succession of the Dadès valley, eastern Ouarzazate Basin (Morocco). Journal of African Earth Sciences 135, 54–71. https://doi.org/10.1016/j.jafrearsci.2017.01.018
  5. Bouchaou L., Michelot J.L., Qurtobi M., Zine N., Gaye C.B., Aggarwal P.K., Marah H., Zerouali A., Taleb H. & Vengosh A., 2009. Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. Journal of Hydrology 379, 323–338.
  6. Boummane K., Jaffal M. & Kchikach A., 2009. Study of the Ouarzazate Basin structure by seismic reflection: Hydrogeological implications. Estudios Geologicos 65, 157–165. https://doi.org/10.3989/egeol.39864.065
  7. Cappy S., 2006. Hydrogeological characterization of the Upper Drâa catchment: Morocco. 41–68 pp.
  8. Diriba D., Karuppannan S., Takele T. & Husein M., 2024. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Heliyon 10 (3).
  9. DRPE, 1994. Master plan study for the development of the Guir, Ziz, Rhéris and Drâa basins: development scheme study. Vol. II. Direction of Water Research and Planning. Rabat, Morocco.
  10. DRPE, 2010. Master plan study for the development: the Guelmim Hydraulic Basin. Vol. II. Direction of Water Research and Planning. Rabat, Morocco.
  11. Duguma T.A. & Duguma G.A., 2022. Assessment of groundwater potential zones of upper blue nile river basin using multi‐influencing factors under GIS and rs environment: a case study on guder water-sheds, abay basin, Oromia region, Ethiopia. Geofluids 1172039.
  12. Elmotawakkil A., Moumaneb A., Zahi A., Sadiki A., Karkouri J., Batchi M., Bhagat S.K., Tiyasha T. & Enneya N., 2025. Artificial intelligence for groundwater recharge prediction in an arid region: application of tabular deep learning models in the Feija Basin, Morocco. Frontiers in Remote Sensing 6, 1622360.
  13. Ervin M.C. & Morgan J.R., 2001. Groundwater control around a large basement. Canadian Geotechnical Journal 38, 732–740.
  14. Fekkak A., 1992. Le PII. Inférieur de la boutonniere de sidi flah (Saghro Occidental, Anti-Atlas, Maroc): Relique d’un substratum océanique de l’arc du Saghro [Lower part of the Sidi Flah (Western Saghro, Anti-Atlas, Morocco): Relic of an oceanic bedrock of the Saghro arc]. University Cadi Ayyad, Marrakech. 83–92 pp.
  15. Fetter C.W., 2018. Applied Hydrogeology. 4th ed. Waveland Press, 284 pp.
  16. Gebru H., Gebreyohannes T. & Hagos E., 2020. Identification of groundwater potential zones using analytical hierarchy process (AHP) and GIS-remote sensing integration, the case of Golina River Basin, Northern Ethiopia. International Journal of Advanced Remote Sensing and GIS 9, 3289–3311.
  17. Gintamo B., Khan M.A., Gulilat H., Shukla R.K. & Mekonnen Z., 2022. Determination of the physicochemical quality of groundwater and its potential health risk for drinking in Oromia, Ethiopia. Environmental Health Insights 16, 11786302221096052.
  18. Hairchi K. El, Limame A., Benbrahim Y., Saadi O., Ouiaboub L., Nouayti A. & Nouayti N., 2025. Groundwater potential zones mapping using GIS, RS, and AHP method in the Guigou basin, Middle Atlas, Morocco. Euro-Mediterranean Journal for Environmental Integration 10, 703–719.
  19. Ikirri M., Boutaleb S., Ibraheem I.M., Abioui M., Echog-dali F.Z., Abdelrahman K., Id-Belqas M., Abu-Alam T., El Ayady H. & Essoussi S., 2023. Delineation of groundwater potential area using an AHP, remote sensing, and GIS techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water 15, 1436.
  20. Jossen J.A. & Filali Moutei J., 1988. Ouarzazate Basin, stratigraphic and structural synthesis. Contribution à l’étude Des Aquifères Profonds–Projet PNUD–DRPE (Direction de La Recherche et de La Planification de l’Eau) MOR/86/004-Exploration Des Eaux Profondes. Rapport Inédit, Rabat.
  21. Kumar D. & Ahmed S., 2003. Seasonal behaviour of spatial variability of groundwater level in a granitic aquifer in monsoon climate. Current Science, 188–196.
  22. Kumar N., Yamaç S.S. & Velmurugan A., 2015. Applications of remote sensing and GIS in natural resource management. Journal of the Andaman Science Association 20, 1–6.
  23. Lee S. & Pradhan B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4, 33–41.
  24. Machiwal D., Jha M.K. & Mal B.C., 2011. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management 25, 1359–1386.
  25. Melese T. & Belay T., 2022. Groundwater potential zone mapping using analytical hierarchy process and GIS in Muga Watershed, Abay Basin, Ethiopia. Global Challenges 6, 2100068.
  26. Moges D.M. & Bhat H.G., 2017. Integration of geospatial technologies with RUSLE for analysis of land use/ cover change impact on soil erosion: case study in Rib watershed, north-western highland Ethiopia. Environmental Earth Sciences 76, 765.
  27. Murmu P., Kumar M., Lal D., Sonker I. & Singh S.K., 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development 9, 100239.
  28. Oikonomidis D., Dimogianni S., Kazakis N. & Voudouris K., 2015. A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology 525, 197–208.
  29. Olubusola I.S., Isaac A., Oyamenda O.K. & Adesola B.M., 2023. Assessment of groundwater occurrence in a typical schist belt region in Osun State, Southwestern Nigeria using VES, aeromagnetic dataset, remotely sensed data, and MCDA approaches. Sustainable Water Resources Management 9, 29.
  30. Oukhro R., Youbi N., Kalderon-Asael B., Evans D.A.D., Pierce J., Wotzlaw J.-F., Ovtcharova M., Mata J., Mediany M.A. & Ounar J., 2025. Volcanic stratigraphy, petrology, geochemistry and precise U-Pb zircon geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental felsic super-eruptions in association with continental flood basalt magmatism on the We. Minerals 15, 776.
  31. Pandian M. & Kumanan C.J., 2013. Geomatics approach to demarcate groundwater potential zones using remote sensing and GIS techniques in part of Trichy and Karur district, Tamilnadu, India. Archives of Applied Science Research 5, 234–240.
  32. Pirasteh S., Samad A., Ahmad R., Thakural L.N., Khan H.H., Chauhan P., Khan A. & Qamar M.Z., 2025. Geospatial and AHP based identification of potential zones for groundwater recharge in Haridwar District of India. Frontiers in Environmental Science 13, 1421918.
  33. Priyan K., 2021. Issues and challenges of groundwater and surface water management in semi-arid regions. Groundwater Resources Development and Planning in the Semi-Arid Region, 1–17. https://doi.org/10.1007/978-3-030-68124-1_1
  34. Saaty T.L. & Wind Y., 1980. Marketing applications of the analytic hierarchy process. Management Science 26, 641–658.
  35. Schiavo A., Taj Eddine K., Algouti A., Benvenuti M., Vittorio G., Piaz D., Eddabbi A. & El Boukhari A., 2007. Explanatory note. Geological map of Morocco 1:50,000, sheet Imtir.
  36. Sener E. & Davraz A., 2013. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal 21, 701–714.
  37. Seqqam A., Touirsi M., Najib S., Fadili A. & Mehdi K., 2025. Integrated approaches to map groundwater potential zones using AHP, GIS, and remote sensing in semi-arid region of Morocco : Case study from Khouribga area. Solid Earth Sciences 10, 100272. https://doi.org/10.1016/j.sesci.2025.100272
  38. Tolche A.D., 2021. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes 5, 65–80.
  39. Tuduri J., Chauvet A., Barbanson L., Bourdier J.-L., Labriki M., Ennaciri A., Badra L., Dubois M., Ennaciri-Leloix C. & Sizaret S., 2018. The Jbel Saghro Au (Ag, Cu) and Ag–Hg metallogenetic province: product of a long-lived Ediacaran tectono-magmatic evolution in the Moroccan Anti-Atlas. Minerals 8, 592.
  40. Uc Castillo J.L., Martínez Cruz D.A., Ramos Leal J.A., Tuxpan Vargas J., Rodríguez Tapia S.A. & Marín Celestino A.E., 2022. Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water 14, 2138.
DOI: https://doi.org/10.14746/logos.2025.31.3.15 | Journal eISSN: 2080-6574 | Journal ISSN: 1426-8981
Language: English
Page range: 183 - 199
Submitted on: Oct 1, 2025
|
Accepted on: Nov 5, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Ghachoui Hayat, Tabit Adbelhalim, Algouti Ahmed, Errami Maryam, Moujane Said, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.