Have a personal or library account? Click to login
Groundwater well fields in ice-margin valley aquifers – is it easy to protect them, or not? An overview of hydrogeological and legal aspects of determining wellhead protection zones Cover

Groundwater well fields in ice-margin valley aquifers – is it easy to protect them, or not? An overview of hydrogeological and legal aspects of determining wellhead protection zones

Open Access
|Dec 2024

References

  1. Ahmadi A., Chitsazan M., Mirzaee S.Y. & Nadri A., 2023. The effects of influence radius and drawdown cone on the areas related to the protection of water wells. Journal of Hydrology 617. https://doi.org/10.1016/j.jhydrol.2022.129001.
  2. Anderson M., Woessner W. & Hunt R., 2015. Applied groundwater modeling: simulation of flow and advective transport. Academic Press, London, 564 p.
  3. Bjerre E., Kristensen L.S., Engesgaard P. & Hojberg A.L., 2020. Drivers and barriers for taking account of geological uncertainty in decision making for ground-water protection. Science of the Total Environment 746. https://doi.org/10.1016/j.scitotenv.2020.141045.
  4. Brenčič M., Prestor J., Kompare B., Matoz H. & Kranjc S., 2009. Integrated approach to delineation of drinking water protection zones. Geologija 52, 175–182, https://doi.org/10.5474/geologija.2009.017.
  5. Chave P., Howard G., Schijven J., Appleyard S., Fladerer F. & Schimon W., 2006. Groundwater protection zones. [In] O. Schmol, G. Howard, J. Chilton & I. Chorus (Eds): Protecting Groundwater for Health. Managing the quality of Drinking-water sources. WHO, London, 465–492.
  6. Corson-Dosch N., Fienen M., Finkelstein J., Leaf A., White J., Woda J. & Williams J., 2022. Areas contributing re-charge to priority wells in valley-fill aquifers in the Neversink River and Rondout Creek Drainage Basins. USGS Scientific Investigations Report, New York https://doi.org/10.3133/sir20215112
  7. Dąbrowski S., Janiszewska B., Rynarzewski W. & Straburzyńska-Janiszewska R., 2018. Odwzorowanie przepływu wód podziemnych systemu wodonośnego odcinka Kościan–Wolsztyn pradoliny Warszawsko-Berlińskiej na modelach lokalnym i regionalnym [Reconstruction of groundwater flow in the water-bearing system of the Warsaw-Berlin ice-marginal valley in the Koscian–Wolsztyn area based on local and regional models]. Biuletyn Państwowego Instytutu Geologicznego 471, 15–22, https://doi.org/10.5604/01.3001.0012.4736.
  8. Dąbrowski S., Janiszewska B., Pawlak A. & Rynarzewski W., 2005. Jakość wód podziemnych jako czynnik warunkujący zasoby dyspozycyjne Pradoliny Warszawsko-Berlińskiej w obszarze zlewni kanałów Obry: Północnego, Środkowego i Południowego [The groundwater quality as the main condition factor safe yield of the Warsaw-Berlin Margin valley in the area of the sasin of the Obra’s channels: Northern, Central and South]. Współczesne Problemy Hydrogeologii 12, 155–163, Toruń.
  9. Desens A. & Houben G.J., 2022. Jenseits von Sichardt – empirische Formeln zur Bestimmung der Absenkreichweite eines Brunnens und ein Verbesserungsvorschlag. Grundwasser – Zeitschrift der Fachsektion Hydrogeologie 27, 131–141, https://doi.org/10.1007/s00767-021-00500-3.
  10. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
  11. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.
  12. Doveri M., Menichini M. & Scozzari A., 2015. Protection of groundwater resources: Worldwide regulations and scientific approaches [In]: A. Scozzari & E. Dotsika (Eds): Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry 40. Springer, Berlin, https://doi.org/10.1007/698_2015_421.
  13. Friesz P., Williams J., Finkelstein J. & Woda J., 2022. Areas contributing recharge to selected production wells in un-confined and confined glacial valley-fill aquifers in Chenango River Basin. USGS Scientific Investigations Report, New York, https://doi.org/10.3133/sir20215083.
  14. Geological and Mining Law. Act of 9 June 2011. Journal of Laws. 2024 item 1290.
  15. Goodarzi M. & Eslamian S., 2019. Evaluation of WhAEM and MODFLOW models to determine the protection zone of drinking wells. Environmental Earth Science 78, 195. https://doi.org/10.1007/s12665-019-8204-5.
  16. Górski J., 2001. Propozycja oceny antropogenicznego zanieczyszczenia wód podziemnych na podstawie wybranych wskaźników hydrochemicznych [Proposal of anthropogenic contamination evaluation of ground water on the base of chosen hydrochemical indicators], Współczesne Problemy Hydrogeologii 10, 309–313, Wrocław.
  17. Górski J., 2010a. Uzdatnianie wód podziemnych w warstwie wodonośnej [Groundwater treatment in the aquifer]. [In:] J. Nawrocki (Ed.): Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań & Wydawnictwo Naukowe PWN, Warszawa, 316–357.
  18. Górski J., 2010b. Groundwater quality changes due to iron sulphide oxidation in the Odra ice marginal valley – long term process observations. Biuletyn Państwowego Instytutu Geologicznego 441, 19–26.
  19. Górski J., 2010c. Zmiany jakości wód podziemnych w warunkach eksploatacji [Groundwater quality changes during exploitation]. [In:] J.F. Lemański & S. Zabawa (Eds): Zaopatrzenie w wodę, jakość i ochrona wód [Water supply and water quality]. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, pp. 115–128.
  20. Górski J., 2017. Dwadzieścia pięć lat doświadczeń w uzdatnianiu wód podziemnych w warstwie wodonośnej na ujęciu Wroniawy dla miasta Wolsztyna [Twenty-five years of experience in groundwater treatment in the aquifer on the Wroniawy water capture for Wolsztyn town]. Przegląd Geologiczny 65, 1257–1263.
  21. Górski J., Kruć-Fijałkowska R., Matusiak M. & Dragon K., 2021. Zmiany chemizmu i jakości wód gruntowego poziomu wodonośnego w warunkach wieloletniej eksploatacji ujęcia wody w Chorzeminie [Changes in chemistry and water quality of the groundwater aquifer under conditions of long-term operation of the Chorzemin water intake]. [In:] D. Wrzesiński, R. Graf & A. Perz (Eds): Naturalne i antropogeniczne zmiany obiegu wody. Ilościowe i jakościowe badania wód [Natural and anthropogenic changes in the water cycle. Water quantitative and qualitative studies]. Studia i prace z geografii, Poznań 88, 29–39.
  22. Graf R. & Przybyłek J., 2018. Application of the WetSpass simulation model for determining conditions governing the recharge of shallow groundwater in the Poznan Upland, Poland. Geologos 2, 189–205, https://doi.org/10.2478/logos-2018-0020.
  23. Gurwin J., 2015. Integration of numerical models with geoinformatic techniques in delimitation of protection zone of complex multi-aquifer system of MGB 319, SW Poland. Geologos 21, 169–177, https://doi:10.1515/logos–2015-0014.
  24. Liu Y., Weisbrod N. & Yakirevich A., 2019. Comparative study of methods for delineating the wellhead protection area in an unconfined coastal aquifer. Water 11, 1168, https://doi.org/10.3390/w11061168.
  25. Louwyck A., Vandenbohede A., Libbrecht D., Van Camp M. & Walraevens K., 2022. The radius of influence myth. Water 14, https://doi.org/10.3390/w14020149
  26. Matusiak M. & Przybyłek J., 2017. Wykorzystanie niestacjonarnego modelu przepływu do oceny rzeczywistej wielkości eksploatacji wód podziemnych z piętra jurajsko-kredowego na obszarze intensywnych nawodnień rolniczych w rejonie Kalisza. [The usefulness of transient modeling method in quantification of actual groundwater abstraction out of Jurassic-Cretaceous aquifer within intensive irrigated areas near Kalisz]. Przegląd Geologiczny 65, 1218–1224.
  27. Matusiak M., Dragon K., Gorski J., Kruc-Fijałkowska R. & Przybylek J., 2021. Surface water and groundwater interaction at long-term exploited river bank filtration site based on groundwater flow modelling (Mosina–Krajkowo, Poland). Journal of Hydrology: Regional Studies 37, 100882, https://doi.org/10.1016/j.ejrh.2021.100882.
  28. McDonald M.G. & Harbaugh A.W., 1988. A modular three-dimensional finite-difference groundwater flow model. USGS Techniques of Water Resources Investigations 06-A1, Washington, https://doi.org/10.3133/twri06A1.
  29. Moutsopoulos K., Gemitzi A. & Tsihrintzis V., 2008. Delineation of groundwater protection zones by the backward particle tracking method: theoretical background and GIS-based stochastic analysis. Environmental Geology 54, 1081–1090, https://doi.org/10.1007/s00254-007-0879-3.
  30. Osmanaj L., Hajra A. & Berisha A., 2021. Determination of groundwater protection zones of the Pozharan wellfield using hydrogeological Modflow Model. Journal of Ecological Engineering 22, 73–81, https://doi.org/10.12911/22998993/132429.
  31. Ozdemir A., 2021. A framework for drinking water basin protection. Water and Environment Journal 35, 1362–1375, https://doi.org/10.1111/wej.12735.
  32. Paris M., D’elıa M., Perez M. & Pacini J., 2019. Wellhead protection zones for sustainable groundwater supply. Sustainable Water Resources Management 5, 161–174. https://doi.org/10.1007/s40899-017-0156-x.
  33. Pollock D.W., 1989. Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite-difference groundwater flow model. US Geological Survey, Reston, https://doi.org/10.3133/ofr89381.
  34. Pollock D.W., 2016. User Guide for MODPATH Version 7—A Particle-Tracking Model for MODFLOW. US Geological Survey, Reston, https://doi.org/10.3133/ofr20161086.
  35. Steiakakis E., Vavadakis D. & Mourkakou O., 2023. Groundwater vulnerability and delineation of protection zones in the discharge area of a karstic aquifer-application in Agyia’s karst system (Crete, Greece). Water 15, https://doi.org/10.3390/w15020231.
  36. Urumovic K., 2016. The referential grain size and effective porosity in the Kozeny-Carman model. Hydrology and Earth System Sciences 20, 1669–1680. https://doi.org/10.5194/hess-20-1669-2016.
  37. Water Law. Act of 20 July 2017. Journal of Laws. 2021 item 624.
  38. Witczak S. & Żurek A., 1994. Wykorzystanie map glebowo--rolniczych w ocenie ochronnej roli gleb dla wód podziemnych [The use of soil-agricultural maps in evaluating the protective role of soils for groundwater]. [In:] A.S. Kleczkowski (Ed.): Metodyczne podstawy ochrony wód podziemnych [Methodical Basement of the Groundwater Protection]. Wydawnictwo AGH, Kraków, 155–180.
  39. Wyssling L., 1979. Eine neue Formel zur Berechnung der Zustromdauer (Laufzeit) des Grundwassers zu einem Grundwasser Pumpwerk. Eclogae Geologicae Helvetiae 72, 401–406.
  40. Zeferino J., Paiva M., Carvalho M.R., Carvalho J.M. & Almeid C., 2022. Long term effectiveness of well-head protection areas. Water 14, 1063, https://doi.org/10.3390/w14071063.
  41. Zhou Y., Hossain P. & van der Moot N., 2015. Analysis of travel time, sources of water and well protection zones with groundwater models. Journal of Groundwater Science and Engineering 3, 363–374.
  42. ŽivanovićV., Jemcov I. & Dragišić V., 2016. Karst ground-water source protection based on the time-dependent vulnerability assessment model: Crnica springs case study, Eastern Serbia. Environmental Earth Sciences 75, 1224, https://doi.org/10.1007/s12665-016-6018-2.
  43. Živanović V., Atanacković N. & Stojadinović S., 2021. Vulnerability assessment as a basis for Sanitary Zone Delineation of Karst Groundwater Sources – Bled-erija Spring case study. Water 13, 2775, https://doi.org/10.3390/w13192775.
DOI: https://doi.org/10.14746/logos.2024.30.3.18 | Journal eISSN: 2080-6574 | Journal ISSN: 1426-8981
Language: English
Page range: 195 - 208
Submitted on: Aug 6, 2024
Accepted on: Sep 25, 2024
Published on: Dec 20, 2024
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Magdalena Matusiak, Józef Górski, Krzysztof Dragon, Roksana Kruć-Fijałkowska, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.