References
- Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.
- Brendel, R. W., & Stern, T. A. (2005). Psychotic symptoms in the elderly. Primary Care Companion to the Journal of Clinical Psychiatry, 7, 238–241.
- Brennan, M. D. (2014). Pharmacogenetics of second-generation antipsychotics. Pharmacogenomics, 15(6), 869–884.
- Carr, J. (1981). Applications of centre manifold theory. Berlin, Germany: Springer.
- Chekroud, A. M., & Krystal, J. H. (2015). Personalised pharmacotherapy: An interim solution for antidepressant treatment? BMJ, 350, h2502.
- Daunizeau, J., David, O., & Stephan, K. E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage, 58, 312–322.
- Davis, M. J. (2006). Low-dimensional manifolds in reaction-diffusion equations: 1. Fundamental aspects. Journal of Physical Chemistry A, 110, 5235–5256.
- de Boer, R. J., & Perelson, A. S. (1991). Size and connectivity as emergent properties of a developing immune network. Journal of Theoretical Biology, 149, 381–424.
- Frank, T. D. (2004). Nonlinear Fokker-Planck equations: Fundamentals and applications (Springer Series in Synergetics). Berlin, Germany: Springer.
- Freyer, F., Roberts, J. A., Ritter, P., & Breakspear, M. (2012). A canonical model of multistability and scale-invariance in biological systems. PLoS Computational Biology, 8, e1002634.
- Friston, K. J. (2016). Computational nosology and precision psychiatry: A proof of concept. In A. D. Redish & J. A. Gordon (Eds.), Computational psychiatry: New perspectives on mental illness (pp. 201–222). Cambridge, MA: MIT Press.
- Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273–1302.
- Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B. C., (2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage, 128, 413–431.
- Friston, K., & Penny, W. (2011). Post hoc Bayesian model selection. NeuroImage, 56, 2089–2099.
- Friston, K., Stephan, K., Li, B., & Daunizeau, J. (2010). Generalised filtering. Mathematical Problems in Engineering, 2010, 621670.
- Friston, K. J., Trujillo-Barreto, N., & Daunizeau, J. (2008). DEM: A variational treatment of dynamic systems. NeuroImage, 41, 849–885.
- Garrido, M. I., Kilner, J. M., Kiebel, S. J., & Friston, K. J. (2009). Dynamic causal modeling of the response to frequency deviants. Journal of Neurophysiology, 101, 2620–2631.
- Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology. Berlin, Germany: Springer.
- Hollis, C., Morriss, R., Martin, J., Amani, S., Cotton, R., Denis, M., & Lewis, S. (2015). Technological innovations in mental healthcare, harnessing the digital revolution. British Journal of Psychiatry, 206, 263–265.
- Hrdlicka, M., & Dudova, I. (2015). Atypical antipsychotics in the treatment of early-onset schizophrenia. Neuropsychiatric Disease and Treatment, 11, 907–913.
- Kass, R. E., & Steffey, D. (1989). Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). Journal of the American Statistical Association, 407, 717–726.
- Kaufman, J., Gelernter, J., Hudziak, J. J., Tyrka, A. R., & Coplan, J. D. (2015). The Research Domain Criteria (RDoC) Project and studies of risk and resilience in maltreated children. Journal of American Academy of Child and Adolescent Psychiatry, 54, 617–625.
- Kay, S. (1990). Positive-negative symptom assessment in schizophrenia: Psychometric issues and scale comparison. Psychiatric Quarterly, 61, 163–178.
- Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261–276.
- Kendler, K. S., & Karkowski-Shuman, L. (1997). Stressful life events and genetic liability to major depression: Genetic control of exposure to the environment?Psychological Medicine, 27, 539–547.
- Krystal, J. H., & State, M. W. (2014). Psychiatric disorders: Diagnosis to therapy. Cell, 157, 201–214.
- Leyton, M., & Vezina, P. (2014). Dopamine ups and downs in vulnerability to addictions: A neurodevelopmental model. Trends in Pharmacological Sciences, 35, 268–276.
- Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Science, 20, 130–141.
- MacKay, D. J. (1995). Free-energy minimisation algorithm for decoding and cryptoanalysis. Electronics Letters, 31, 445–447.
- Martinez, B., & Valstar, M. F. (2016). L2,1-based regression and prediction accumulation across views for robust facial landmark detection. Image and Vision Computing, 47, 36–44.
- Misiak, B., Frydecka, D., Zawadzki, M., Krefft, M., & Kiejna, A. (2014). Refining and integrating schizophrenia pathophysiology—Relevance of the allostatic load concept. Neuroscience and Biobehavioral Reviews, 45, 183–201.
- Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16, 72–80.
- Moran, R. J., Symmonds, M., Stephan, K. E., Friston, K. J., & Dolan, R. J. (2011). An in vivo assay of synaptic function mediating human cognition. Current Biology, 21, 13201325.
- MurdockJ. (2003). Normal forms and unfoldings for local dynamical systems. Berlin, Germany: Springer.
- Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M., & Gaspar, P. (2014). Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Structure and Function, 221, 535–561. doi:10.1007/s00429-014-0924-4.
- Oglodek, E., Szota, A., Just, M., Mos, D., & Araszkiewicz, A. (2014). The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacology Reports, 66, 776–781.
- Paynter, S. (2016). Incorporating transmission into causal models of infectious diseases for improved understanding of the effect and impact of risk factors. American Journal of Epidemiology, 183, 574–582.
- Peled, A. (2009). Neuroscientific psychiatric diagnosis. Medical Hypotheses, 73, 220–229.
- Pettorruso, M., De Risio, L., Di Nicola, M., Martinotti, G., Conte, G., & Janiri, L. (2014). Allostasis as a conceptual framework linking bipolar disorder and addiction. Frontiers in Psychiatry, 5, 173.
- Poland, D. (1993). Cooperative catalysis and chemical chaos, a chemical model for the Lorenz equations. Physica D, 65, 86–99.
- Ranlund, S., Adams, R. A., Diez, A., Constante, M., Dutt, A., Hall, M. H., (2016). Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Human Brain Mapping, 37, 351–365.
- Redish, A., & Gordon, J. (2016). Computational psychiatry: New perspectives on mental illness. Cambridge, MA: MIT Press.
- Redish, A. D., & Johnson, A. (2007). A computational model of craving and obsession. Annals of the New York Academy of Sciences, 1104, 324–339.
- Richesson, R. L., Sun, J., Pathak, J., Kho, A. N., & Denny, J. C. (2016). Clinical phenotyping in selected national networks: Demonstrating the need for high-throughput, portable, and computational methods. Artificial Intelligence in Medicine, 71, 57–61.
- Roberts, J. A., Iyer, K. K., Finnigan, S., Vanhatalo, S., & Breakspear, M. (2014). Scale-free bursting in human cortex following hypoxia at birth. Journal of Neuroscience, 34, 6557–6572.
- Rose, N. R. (2014). Learning from myocarditis, mimicry, chaos and black holes. F1000Prime Reports, 6, 25.
- Stephan, K. E., & Mathys, C. (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 25, 85–92.
- Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuro Image, 46, 1004–1017.
- Thakar, J., Poss, M., Albert, R., Long, G. H., & Zhang, R. (2010). Dynamic models of immune responses, what is the ideal level of detail? Theoretical Biology and Medical Modelling, 7, 35–35.
- Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., & Friston, K. (2011). Effective connectivity: Influence, causality and biophysical modeling. NeuroImage, 58(2), 339–361.
- van de Leemput, I. A., Wichers, M., Cramer, A. O. J., Borsboom, D., Tuerlinckx, F., Kuppens, P., (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111, 87–92.
- Viceconti, M., Hunter, P., & Hose, R. (2015). Big data, big knowledge: Big data for personalized healthcare. IEEE Journal of Biomed Health Inform, 19, 1209–1215.
- Vineis, P., & Kriebel, D. (2006). Causal models in epidemiology: Past inheritance and genetic future. Environmental Health, 5, 21–21.
- Wang, X. J., & Krystal, J. H. (2014). Computational psychiatry. Neuron, 84, 638–654.
- White, L. J., Mandl, J. N., Gomes, M. G., Bodley-Tickell, A. T., Cane, P. A., Perez-Brena, P., (2007). Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences, 209, 222–239.
- World Health Organization. (1993). The ICD-10 classification of mental and behavioural disorders: Diagnostic criteria for research. Geneva, Switzerland: World Health Organization.
- Wieland, S., Schindler, S., Huber, C., Köhr, G., Oswald, M. J., & Kelsch, W. (2015). Phasic dopamine modifies sensory-driven output of striatal neurons through synaptic plasticity. Journal of Neuroscience, 35, 9946–9956.
- Young, P. C. (2002). Advances in real-time flood forecasting. Philosophical Transactions of the Royal Society A, 360, 1433–1450.
