Have a personal or library account? Click to login
Visual Attention Decits in Schizophrenia Can Arise From Inhibitory Dysfunction in Thalamus or Cortex Cover

Visual Attention Decits in Schizophrenia Can Arise From Inhibitory Dysfunction in Thalamus or Cortex

Open Access
|Dec 2018

References

  1. Adams, R. A. , Huys, Q. J. M. , & Roiser, J. P. (2015). Computational psychiatry: Towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery, and Psychiatry, 87, 5363.
  2. Adams, R. A. , Perrinet, L. U. , & Friston, K. (2012). Smooth pursuit and visual occlusion: active inference and oculomotor control in schizophrenia. PLOS One, 7, e47502. https://doi.org/10.1371/journal.pone.0047502
  3. Alherz, F. , Alherz, M. , & Almusawi, H. (2017). NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: A newly identified correlation and its effects in schizophrenia. Schizophrenia Research: Cognition, 8, 16. https://doi.org/10.1016/j.scog.2017.02.001
  4. Allen, J. S. , Matsunaga, K. , Hacisalihzade, S. , & Stark, L. (1990). Smooth pursuit eye movements of normal and schizophrenic subjects tracking an unpredictable target. Biological Psychiatry, 28, 705720. https://doi.org/10.1016/0006-3223(90)90457-D
  5. Anticevic, A. , Haut, K. , Murray, J. D. , Repovs, G. , Yang, G. J. , Diehl, C. , … Cannon, T. D. (2015). Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry, 72, 882891. https://doi.org/10.1001/jamapsychiatry.2015.0566
  6. Barbas, H. , & Mesulam, M. M. (1981). Organization of afferent input to subdivisions of area 8 in the rhesus monkey. Journal of Computational Neurology, 200, 407431. https://doi.org/10.1002/cne.902000309
  7. Bastrup, J. , & Larsen, P. H. (2017). Optimized CLARITY technique detects reduced parvalbumin density in a genetic model of schizophrenia. Journal of Neuroscience Methods, 283, 2332. https://doi.org/10.1016/j.jneumeth.2017.03.011
  8. Beasley, C. L. , Zhang, Z. J. , Patten, I. , & Reynolds, G. P. (2002). Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biological Psychiatry, 52, 708715. https://doi.org/10.1016/S0006-3223(02)01360-4
  9. Benson, P. J. , Beedie, S. A. , Shephard, E. , Giegling, I. , Rujescu, D. , & St. Clair, D. (2012). Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls with exceptional accuracy. Biological Psychiatry, 72, 716724. https://doi.org/10.1016/j.biopsych.2012.04.019
  10. Braver, T. S. , Barch, D. M. , & Cohen, J. D. (1999). Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry, 46, 312328. https://doi.org/10.1016/S0006-3223(99)00116-X
  11. Brown, J. W. , Bullock, D. , & Grossberg, S. (2004). How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 17, 471510. https://doi.org/10.1016/j.neunet.2003.08.006
  12. Buschman, T. J. , & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 18601862. https://doi.org/10.1126/science.1138071
  13. Cantero, J. L. , Atienza, M. , & Salas, R. M. (2002). Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: Different electroencephalographic phenomena within the alpha band. Clinical Neurophysiology, 32, 5471. https://doi.org/10.1016/S0987-7053(01)00289-1
  14. Caruso, V. C. , Pages, D. S. , Sommer, M. A. , & Groh, J. M. (2018). Beyond the labeled line: Variation in visual reference frames from intraparietal cortex to frontal eye fields and the superior colliculus. Journal of Neurophysiology, 119, 14111421. https://doi.org/10.1152/jn.00584.2017
  15. Chance, S. A. , Walker, M. , & Crow, T. J. (2005). Reduced density of calbindin-immunoreactive interneurons in the planum temporale in schizophrenia. Brain Research, 1046, 3237. https://doi.org/10.1016/j.brainres.2005.03.045
  16. Chung, D. W. , Fish, K. N. , & Lewis, D. A. (2016). Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. American Journal of Psychiatry, 173, 11311139. https://doi.org/10.1176/appi.ajp.2016.16010025
  17. Clementz, B. A. , Grove, W. M. , Iacono, W. G. , & Sweeney, J. A. (1992). Smooth-pursuit eye movement dysfunction and liability for schizophrenia: Implications for genetic modeling. Journal of Abnormal Psychology, 101, 117129.
  18. Clementz, B. A. , Sweeney, J. A. , Hamm, J. P. , Ivleva, E. I. , Ethridge, L. E. , Pearlson, G. D. , … Tamminga, C. A. (2015). Identification of distinct psychosis biotypes using brain-based biomarkers. American Journal of Psychiatry, 173, 373384. https://doi.org/10.1176/appi.ajp.2015.14091200
  19. Coyle, J. T. (2004). The GABA-glutamate connection in schizophrenia: Which is the proximate cause? Biochemical Pharmacology, 68, 15071514. https://doi.org/10.1016/j.bcp.2004.07.034
  20. Crandall, S. R. , Cruikshank, S. J. , & Connors, B. W. (2015). A corticothalamic switch: Controlling the thalamus with dynamic synapses. Neuron, 86, 768782. https://doi.org/10.1016/j.neuron.2015.03.040
  21. DeFelipe, J. (1997). Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. Journal of Chemical Neuroanatomy, 14, 119. https://doi.org/10.1016/S0891-0618(97)10013-8
  22. Destexhe, A. , Contreras, D. , Steriade, M. , Sejnowski, T. J. , & Huguenard, J. R. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience, 16, 169185.
  23. Diefendorf, A. R. , & Dodge, R. (1908). An experimental study of the ocular reactions of the insane from photographic records. Brain, 31, 451489. https://doi.org/10.1093/brain/31.3.451
  24. Dienel, S. J. , & Lewis, D. A. (2018). Alterations in cortical inter neurons and cognitive function in schizophrenia. Neurobiology of Disease. https://doi.org/10.1016/j.nbd.2018.06.020
  25. Dombrowski, S. M. , Hilgetag, C. C. , & Barbas, H. (2001). Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cerebral Cortex, 11, 975988.
  26. Ferrarelli, F. , & Tononi, G. (2011). The thalamic reticular nucleus and schizophrenia. Schizophrenia Bulletin, 37, 306315. https://doi.org/10.1093/schbul/sbq142
  27. Ferrarelli, F. , & Tononi, G. (2017). Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophrenia Research, 180, 3643. https://doi.org/10.1016/j.schres.2016.05.023
  28. Foxe, J. J. , & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2.
  29. Freund, T. F. , & Katona, I. (2007). Perisomatic inhibition. Neuron, 56, 3342. https://doi.org/10.1016/j.neuron.2007.09.012
  30. Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115125.
  31. Fung, S. J. , Fillman, S. G. , Webster, M. J. , & Shannon Weickert, C. (2014). Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers. Schizophrenia Research, 155, 2630. https://doi.org/10.1016/j.schres.2014.02.021
  32. Glausier, J. R. , & Lewis, D. A. (2017). GABA and schizophrenia: Where we stand and where we need to go. Schizophrenia Research, 181, 23. https://doi.org/10.1016/j.schres.2017.01.050
  33. Gollo, L. L. , Mirasso, C. , & Villa, A. E. P. (2010). Dynamic control for synchronization of separated cortical areas through thalamic relay. NeuroImage, 52, 947955. https://doi.org/10.1016/j.neuroimage.2009.11.058
  34. González-Albo, M. C. , Elston, G. N. , & DeFelipe, J. (2001). The human temporal cortex: Characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium-binding proteins, and their glutamate receptor subunit profiles. Cerebral Cortex, 11, 11701181. https://doi.org/10.1093/cercor/11.12.1170
  35. Gonzalez-Burgos, G. , Cho, R. Y. , & Lewis, D. A. (2015). Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biological Psychiatry, 77, 10311040. https://doi.org/10.1016/j.biopsych.2015.03.010
  36. Guillozet-Bongaarts, A. L. , Hyde, T. M. , Dalley, R. A. , Hawrylycz, M. J. , Henry, A. , Hof, P. R. , … Kleinman, J. E. (2014). Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Molecular Psychiatry, 19, 478485. https://doi.org/10.1038/mp.2013.30
  37. Heinzle, J. , Aponte, E. A. , & Stephan, K. E. (2016). Computational models of eye movements and their application to schizophrenia. Current Opinion in Behavioral Sciences, 11, 2129. https://doi.org/10.1016/j.cobeha.2016.03.008
  38. Hemsley, D. R. (2005). The schizophrenic experience: Taken out of context? Schizophrenia Bulletin, 31, 4353. https://doi.org/10.1093/schbul/sbi003
  39. Hirvonen, J. , Wibral, M. , Palva, J. M. , Singer, W. , Uhlhaas, P. , & Palva, S. (2017). Whole-brain source-reconstructed MEG-data reveal reduced long-range synchronization in chronic schizophrenia. eNeuro, 4(5), e0338–17.2017.
  40. Holzman, P. S. , Proctor, L. R. , & Hughes, D. W. (1973). Eye-tracking patterns in schizophrenia. Science, 181, 179181. https://doi.org/10.1126/science.181.4095.179
  41. Holzman, P. S. , Proctor, L. R. , Levy, D. L. , Yasillo, N. J. , Meltzer, H. Y. , & Hurt, S. W. (1974). Eye-tracking dysfunctions in schizophrenic patients and their relatives. Archives of General Psychiatry, 31, 143151.
  42. Hong, L. E. , Summerfelt, A. , Mitchell, B. D. , McMahon, R. P. , Wonodi, I. , Buchanan, R. W. , & Thaker, G. K. (2008). Sensory gating endophenotype based on its neural oscillatory pattern and heritability estimate. Archives of General Psychiatry, 65, 10081016. https://doi.org/10.1001/archpsyc.65.9.1008
  43. Hong, L. E. , Summerfelt, A. , Mitchell, B. D. , O’Donnell, P. , & Thaker, G. K. (2012). A shared low-frequency oscillatory rhythm abnormality in resting and sensory gating in schizophrenia. Clinical Neurophysiology, 123, 285292. https://doi.org/10.1016/j.clinph.2011.07.025
  44. Hulme, O. J. , Whiteley, L. , & Shipp, S. (2010). Spatially distributed encoding of covert attentional shifts in human thalamus. Journal of Neurophysiology, 104, 36443656. https://doi.org/10.1152/jn.00303.2010
  45. Iacono, W. G. , Moreau, M. , Beiser, M. , Fleming, J. A. , & Lin, T.-Y. (1992). Smooth-pursuit eye tracking in first-episode psychotic patients and their relatives. Journal of Abnormal Psychology, 101, 104116. https://doi.org/10.1037/0021-843X.101.1.104
  46. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 15691572. https://doi.org/10.1109/TNN.2003.820440
  47. Jablensky, A. (2000). Epidemiology of schizophrenia: The global burden of disease and disability. European Archives of Psychiatry and Clinical Neuroscience, 250, 274285. https://doi.org/10.1007/s004060070002
  48. John, Y. J. , Zikopoulos, B. , Bullock, D. , & Barbas, H. (2016). The emotional gatekeeper: A computational model of attentional selection and suppression through the pathway from the amygdala to the inhibitory thalamic reticular nucleus. PLOS Computational Biology, 12, e1004722. https://doi.org/10.1371/journal.pcbi.1004722
  49. John, Y. J. , Zikopoulos, B. , Bullock, D. , & Barbas, H. (2018). Supporting information for “Visual attention deficits in schizophrenia can arise from inhibitory dysfunction in thalamus or cortex.” Neural Systems Laboratory, Boston University. http://www.bu.edu/neural/Models/SchizModel.zip
  50. Jones, E. G. (2007). The thalamus. Cambridge, England: Cambridge University Press.
  51. Kawaguchi, Y. , & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7, 476486. https://doi.org/10.1093/cercor/7.6.476
  52. Kehrer, C. , Maziashvili, N. , Dugladze, T. , & Gloveli, T. (2008). Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Frontiers in Molecular Neuroscience, 1. https://doi.org/10.3389/neuro.02.006.2008
  53. Kimoto, S. , Glausier, J. R. , Fish, K. N. , Volk, D. W. , Bazmi, H. H. , Arion, D. , … Lewis, D. A. (2016). Reciprocal alterations in regulator of G protein signaling 4 and microRNA16 in schizophrenia. Schizophrenia Bulletin, 42, 396405. https://doi.org/10.1093/schbul/sbv139
  54. Krauzlis, R. J. , Lovejoy, L. P. , & Zénon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165182. https://doi.org/10.1146/annurev-neuro-062012-170249
  55. Krishna, N. , O’Neill, H. , Sánchez-Morla, E. M. , & Thaker, G. K. (2014). Long range frontal/posterior phase synchronization during remembered pursuit task is impaired in schizophrenia. Schizophrenia Research, 157(1–3), 198203.
  56. Krystal, J. H. , Anticevic, A. , Yang, G. J. , Dragoi, G. , Driesen, N. R. , Wang, X.-J. , & Murray, J. D. (2017). Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: A translational and computational neuroscience perspective. Biological Psychiatry, 81, 874885. https://doi.org/10.1016/j.biopsych.2017.01.004
  57. Levy, D. L. , Sereno, A. B. , Gooding, D. C. , & O’Driscoll, G. A. (2010). Eye tracking dysfunction in schizophrenia: Characterization and pathophysiology. Current Topics in Behavioral Neuroscience, 4, 311347.
  58. Litman, R. E. , Torrey, E. F. , Hommer, D. W. , Radant, A. R. , Pickar, D. , & Weinberger, D. R. (1997). A quantitative analysis of smooth pursuit eye tracking in monozygotic twins discordant for schizophrenia. Archives of General Psychiatry, 54, 417426.
  59. Medalla, M. , & Barbas, H. (2006). Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. European Journal of Neuroscience, 23, 161179. https://doi.org/10.1111/j.1460-9568.2005.04522.x
  60. Murray, J. D. , Anticevic, A. , Gancsos, M. , Ichinose, M. , Corlett, P. R. , Krystal, J. H. , & Wang, X.-J. (2014). Linking microcircuit dysfunction to cognitive impairment: Effects of disinhibition associated with schizophrenia in a cortical working memory model. Cerebral Cortex, 24, 859872. https://doi.org/10.1093/cercor/bhs370
  61. Nkam, I. , Bocca, M.-L. , Denise, P. , Paoletti, X. , Dollfus, S. , Levillain, D. , & Thibaut, F. (2010). Impaired smooth pursuit in schizophrenia results from prediction impairment only. Biological Psychiatry, 67, 992997. https://doi.org/10.1016/j.biopsych.2009.11.029
  62. O’Driscoll, G. A. , & Callahan, B. L. (2008). Smooth pursuit in schizophrenia: A meta-analytic review of research since 1993. Brain and Cognition, 68, 359370. https://doi.org/10.1016/j.bandc.2008.08.023
  63. Olney, J. W. , & Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry, 52, 9981007.
  64. Olney, J. W. , Newcomer, J. W. , & Farber, N. B. (1999). NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research, 33, 523533. https://doi.org/10.1016/S0022-3956(99)00029-1
  65. Palma, J. , Grossberg, S. , & Versace, M. (2012). Persistence and storage of activity patterns in spiking recurrent cortical networks: Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine. Frontiers in Computational Neuroscience, 6, Article 42. https://doi.org/10.3389/fncom.2012.00042
  66. Palomero-Gallagher, N. , & Zilles, K. (2017). Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. NeuroImage. https://doi.org/10.1016/j.neuroimage.2017.08.035
  67. Pinault, D. (2004). The thalamic reticular nucleus: Structure, function and concept. Brain Research Review, 46, 131.
  68. Pouget, P. , Stepniewska, I. , Crowder, E. A. , Leslie, M. W. , Emeric, E. E. , Nelson, M. J. , & Schall, J. D. (2009). Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: Implications for saccade target selection. Frontiers in Neuroanatomy, 3. https://doi.org/10.3389/neuro.05.002.2009
  69. Pratt, J. A. , Dawson, N. , Morris, B. J. , Grent-’t-Jong, T. , Roux, F. , & Uhlhaas, P. J. (2017). Thalamo-cortical communication, glutamatergic neurotransmission and neural oscillations: A unique window into the origins of ScZ? Schizophrenia Research, 180, 412. https://doi.org/10.1016/j.schres.2016.05.013
  70. Pratt, J. A. , & Morris, B. J. (2015). The thalamic reticular nucleus: A functional hub for thalamocortical network dysfunction in schizophrenia and a target for drug discovery. Journal of Psychopharmacology, 29, 127137. https://doi.org/10.1177/0269881114565805
  71. Rao, H. M. , Mayo, J. P. , & Sommer, M. A. (2016). Circuits for presaccadic visual remapping. Journal of Neurophysiology, 116, 26242636. https://doi.org/10.1152/jn.00182.2016
  72. Reynolds, G. P. , Abdul-Monim, Z. , Neill, J. C. , & Zhang, Z.-J. (2004). Calcium binding protein markers of GABA deficits in schizophrenia—post mortem studies and animal models. Neurotoxicology Research, 6, 5761. https://doi.org/10.1007/BF03033297
  73. Rocco, B. R. , Lewis, D. A. , & Fish, K. N. (2016). Markedly lower glutamic acid decarboxylase 67 protein levels in a subset of boutons in schizophrenia. Biological Psychiatry, 79, 10061015. https://doi.org/10.1016/j.biopsych.2015.07.022
  74. Ross, D. E. , Thaker, G. K. , Buchanan, R. W. , Kirkpatrick, B. , Lahti, A. C. , Medoff, D. , … Tien, A. (1997). Eye tracking disorder in schizophrenia is characterized by specific ocular motor defects and is associated with the deficit syndrome. Biological Psychiatry, 42, 781796. https://doi.org/10.1016/S0006-3223(96)00492-1
  75. Rotaru, D. C. , Lewis, D. A. , & Gonzalez-Burgos, G. (2012). The role of glutamatergic inputs onto parvalbumin-positive interneurons: Relevance for schizophrenia. Reviews in the Neurosciences, 23, 97109. https://doi.org/10.1515/revneuro-2011-0059
  76. Rybakowski, J. K. , & Borkowska, A. (2002). Eye movement and neuropsychological studies in first-degree relatives of schizophrenic patients. Schizophrenia Research, 54, 105110.
  77. Schall, J. D. (2015). Visuomotor functions in the frontal lobe. Annual Review of Vision Science, 1, 469498. https://doi.org/10.1146/annurev-vision-082114-035317
  78. Scheyltjens, I. , & Arckens, L. (2016). The current status of somatostatin-interneurons in inhibitory control of brain function and plasticity. Neural Plasticity, 2016, Article 8723623. https://doi.org/10.1155/2016/8723623
  79. Smith, A. T. , Cotton, P. L. , Bruno, A. , & Moutsiana, C. (2009). Dissociating vision and visual attention in the human pulvinar. Journal of Neurophysiology, 101, 917925. https://doi.org/10.1152/jn.90963.2008
  80. Sparks, D. W. , Tian, M. K. , Sargin, D. , Venkatesan, S. , Intson, K. , & Lambe, E. K. (2018). Opposing cholinergic and serotonergic modulation of layer 6 in prefrontal cortex. Frontiers in Neural Circuits, 11. https://doi.org/10.3389/fncir.2017.00107
  81. Srihasam, K. , Bullock, D. , & Grossberg, S. (2009). Target selection by the frontal cortex during coordinated saccadic and smooth pursuit eye movements. Journal of Cognitive Neuroscience, 21, 16111627. https://doi.org/10.1162/jocn.2009.21139
  82. Stephan, K. E. , Friston, K. J. , & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35, 509527. https://doi.org/10.1093/schbul/sbn176
  83. Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends in Neuroscience, 28, 317324.
  84. Steriade, M. , McCormick, D. A. , & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679685.
  85. Steullet, P. , Cabungcal, J.-H. , Coyle, J. , Didriksen, M. , Gill, K. , Grace, A. A. , … Do, K. Q. (2017). Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 22, 936943. https://doi.org/10.1038/mp.2017.47
  86. Tatard-Leitman, V. M. , Jutzeler, C. R. , Suh, J. , Saunders, J. A. , Billingslea, E. N. , Morita, S. , … Siegel, S. J. (2015). Pyramidal cell selective ablation of NMDA-R1 causes increase in cellular and network excitability. Biological Psychiatry, 77, 556568. https://doi.org/10.1016/j.biopsych.2014.06.026
  87. Tian, J. , & Lynch, J. C. (1997). Subcortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkey. Journal of Neuroscience, 17, 92339247.
  88. Titone, D. , Levy, D. L. , & Holzman, P. S. (2016). Contextual insensitivity in schizophrenic language processing: Evidence from lexical ambiguity. Journal of Abnormal Psychology, 109, 761767. https://doi.org/10.1037/0021-843X.109.4.761
  89. Tu, P.-C. , Hsieh, J.-C. , Li, C.-T. , Bai, Y.-M. , & Su, T.-P. (2012). Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: A resting fMRI study. NeuroImage, Neuroergonomics, 59, 238247. https://doi.org/10.1016/j.neuroimage.2011.07.086
  90. Uhlhaas, P. J. , Haenschel, C. , Nikolić, D. , & Singer, W. (2008). The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophrenia Bulletin, 34, 927943.
  91. Uhlhaas, P. J. , & Singer, W. (2011). The development of neural synchrony and large-scale cortical networks during adolescence: Relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. Schizophrenia Bulletin, 37, 514523. https://doi.org/10.1093/schbul/sbr034
  92. Vijayan, S. , & Kopell, N. J. (2012). Thalamic model of awake alpha oscillations and implications for stimulus processing. Proceedings of the National Academy of Sciences, 109, 1855318558.
  93. Viriyopase, A. , Bojak, I. , Zeitler, M. , & Gielen, S. (2012). When long-range zero-lag synchronization is feasible in cortical networks. Frontiers in Computational Neuroscience, 6. https://doi.org/10.3389/fncom.2012.00049
  94. Volk, D. W. , Matsubara, T. , Li, S. , Sengupta, E. J. , Georgiev, D. , Minabe, Y. , … Lewis, D. A. (2012). Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. American Journal of Psychiatry, 169, 10821091. https://doi.org/10.1176/appi.ajp.2012.12030305
  95. Wang, X.-J. , Tegnér, J. , Constantinidis, C. , & Goldman-Rakic, P. S. (2004). Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proceedings of the National Academy of Sciences, 101, 13681373. https://doi.org/10.1073/pnas.0305337101
  96. Willis, A. M. , Slater, B. J. , Gribkova, E. D. , & Llano, D. A. (2015). Open-loop organization of thalamic reticular nucleus and dorsal thalamus: A computational model. Journal of Neurophysiology, 114, 23532367.
  97. Wimmer, R. D. , Schmitt, L. I. , Davidson, T. J. , Nakajima, M. , Deisseroth, K. , & Halassa, M. M. (2015). Thalamic control of sensory selection in divided attention. Nature, 526, 705709. https://doi.org/10.1038/nature15398
  98. Woo, T.-U. W. , Shrestha, K. , Lamb, D. , Minns, M. M. , & Benes, F. M. (2008). N-methyl-D-aspartate receptor and calbindin-containing neurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Biological Psychiatry, 64, 803809. https://doi.org/10.1016/j.biopsych.2008.04.034
  99. Xiao, D. , Zikopoulos, B. , & Barbas, H. (2009). Laminar and modular organization of prefrontal projections to multiple thalamic nuclei. Neuroscience, 161, 10671081. https://doi.org/10.1016/j.neuroscience.2009.04.034
  100. Zhan, X. J. , Cox, C. L. , Rinzel, J. , & Sherman, S. M. (1999). Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. Journal of Neurophysiology, 81, 23602373. https://doi.org/10.1152/jn.1999.81.5.2360
  101. Zikopoulos, B. , & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26, 73487361.
  102. Zikopoulos, B. , & Barbas, H. (2007). Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Reviews in Neuroscience, 18, 417438.
Language: English
Submitted on: Apr 27, 2018
Accepted on: Oct 17, 2018
Published on: Dec 1, 2018
Published by: MIT Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Yohan J. John, Basilis Zikopoulos, Daniel Bullock, Helen Barbas, published by MIT Press
This work is licensed under the Creative Commons Attribution 4.0 License.