References
- Agay, N., Kron, S., Carmel, Z., Mendlovic, S., & Levkovitz, Y. (2008). Ultimatum bargaining behavior of people affected by schizophrenia. Psychiatry Research, 157, 39–46. doi:10.1016/j.psychres.2006.03.026
- Ahn, W.-Y., & Busemeyer, J. R. (2016). Challenges and promises for translating computational tools into clinical practice. Current Opinion in Behavioral Sciences, 11, 1–7. doi:10.1016/j.cobeha.2016.02.001
- Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E. J., & Stout, J. C. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32, 1376–1402. doi:10.1080/03640210802352992
- Ahn, W.-Y., Krawitz, A., Kim, W., Busemeyer, J. R., & Brown, J. W. (2011). A model-based fMRI analysis with hierarchical Bayesian parameter estimation. Journal of Neuroscience, Psychology, and Economics, 4, 95–110. doi:10.1037/a0020684
- Ahn, W.-Y., Ramesh, D., Moeller, F. G., & Vassileva, J. (2016). Utility of machine-learning approaches to identify behavioral markers for substance use disorders: Impulsivity dimensions as predictors of present cocaine dependence. Frontiers in Psychiatry, 7, 290. doi:10.3389/fpsyt.2016.00034
- Ahn, W.-Y., Rass, O., Fridberg, D. J., Bishara, A. J., Forsyth, J. K., Breier, A., … O’Donnell, B. F. (2011). Temporal discounting of reward in patients with bipolar disorder and schizophrenia. Journal of Abnormal Psychology, 120, 911–921. doi:10.1037/a0023333
- Ahn, W.-Y., & Vassileva, J. (2016). Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence. Drug and Alcohol Dependence, 161, 247–257. doi:10.1016/j.drugalcdep.2016.02.008
- Ahn, W.-Y., Vasilev, G., Lee, S.-H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: Evidence from computational modeling with pure users. Frontiers in Psychology, 5, 849. doi:10.3389/fpsyg.2014.00849
- Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.
- Albrecht, M. A., Waltz, J. A., Cavanagh, J. F., Frank, M. J., & Gold, J. M. (2016). Reduction of Pavlovian bias in schizophrenia: Enhanced effects in clozapine-administered patients. PLoS ONE, 11, e0152781. doi:10.1371/journal.pone.0152781
- Bartlema, A., Lee, M., Wetzels, R., & Vanpaemel, W. (2014). A Bayesian hierarchical mixture approach to individual differences: Case studies in selective attention and representation in category learning. Journal of Mathematical Psychology, 59, 132–150. doi:10.1016/j.jmp.2013.12.002
- Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15. doi:10.1016/0010-0277(94)90018-3
- Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389. doi:10.1016/S0028-3932(00)00136-6
- Bechara, A., & Martin, E. M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152–162. doi:10.1037/0894-4105.18.1.152
- Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10, 1214–1221. doi:10.1038/nn1954
- Bickel, W. K. (2015).Discounting of delayed reward as an endophenotype. Biological Psychiatry, 77, 846–847. doi:10.1016/j.biopsych.2015.03.003
- Bolla, K. I., Eldreth, D. A., London, E. D., Kiehl, K. A., Mouratidis, M., Contoreggi, C., … Ernst, M. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. NeuroImage, 19, 1085–1094. doi:10.1016/S1053-8119(03)00113-7
- Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370.
- Busemeyer, J. R., Diederich, A. (2010). Cognitive modeling. New York, NY: Sage. doi:10.1037/e722292011-099
- Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model selections on the basis of generalization criterion meth odology. Journal of Mathematical Psychology, 44, 1–19. doi:10.1006/jmps.1999.1282
- Camerer, C. F., & Ho, T.-H. (1999). Experienced-weighted attraction learning in normal form games. Econometrica, 67, 827–874.
- Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2016). Stan: A probabilistic pro gramming language. Journal of Statistical Software, 76(1), 1–32. doi:10.18637/jss.v076.i01
- Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal theta overrides Pavlovian learning biases. Journal of Neuroscience, 33, 8541–8548.
- Chan, T. W. S., Ahn, W.-Y., Bates, J. E., Busemeyer, J. R., Guillaume, S., Redgrave, G. W., … Courtet, P. (2014). Differential impairments underlying decision making in anorexia nervosa and bulimia nervosa: A cognitive modeling analysis. International Journal of Eating Disorders, 47, 157–167. doi:10.1002/eat.22223
- Chowdhury, R., Guitart-Masip, M., Lambert, C., Dolan, R. J., & Duzel, E. (2013). Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals, 34, 2261–2270. doi:10.1016/j.neurobiolaging.2013.03.030
- Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. Journal of Neuroscience, 22, 4563–4567.
- Cools, R., Lewis, S. J., Clark, L., Barker, R. A., & Robbins, T. W. (2007). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology, 32, 180–189. doi:10.1038/sj.npp.1301153
- Csukly, G., Polgár, P., Tombor, L., Réthelyi, J., & Kéri, S. (2011). Are patients with schizophrenia rational maximizers? Evidence from an ultimatum game study. Psychiatry Research, 187, 11–17. doi:10.1016/j.psychres.2010.10.005
- Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational Biology, 10, e1003441. doi:10.1371/journal.pcbi.1003441
- Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879. doi:10.1038/nature04766
- Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. Cognitive, Affective, and Behavioral Neuroscience, 8, 429–453. doi:10.3758/CABN.8.4.429
- Dayan, P., Niv, Y., Seymour, B., & Daw, N. D. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19, 1153–1160. doi:10.1016/j.neunet.2006.03.002
- den Ouden, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., … Cools, R. (2013). Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80, 1090–1100. doi:10.1016/j.neuron.2013.08.030
- Ebert, J., & Prelec, D. (2007). The fragility of time: Time-insensitivity and valuation of the near and far future. Management Science, 53, 1423–1438.
- Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., … Lebiere, C. (2010). A choice prediction competition: Choices from experience and from description. Journal of Behavioral Decision Making, 23, 15–47.
- Ersche, K. D., Roiser, J. P., Robbins, T. W., & Sahakian, B. J. (2008). Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology, 197, 421431. doi:10.1007/s00213-007-1051-1
- Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126, 1830–1837.
- Forstmann, B. U.Wagenmakers, E.-J.2015). An introduction to model-based cognitive neuroscience. Berlin, Germany: Springer. doi:10.1007/978-1-4939-2236-9
- Fridberg, D. J., Ahn, W.-Y., Kim, W., Bishara, A. J., & Stout, J. C. (2010). Cognitive mechanisms underlying risky decision-making in chronic cannabis users. Journal of Mathematical Psychology, 54, 28–38. doi:10.1016/j.jmp.2009.10.002
- Friston, K. J., Stephan, K. E., Montague, P. R., & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. Lancet: Psychiatry, 1, 148–158. doi:10.1016/S2215-0366(14)70 275-5
- Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515–534.
- Gelman, A., Dunson, D. B., Vehtari, A. (2013). Bayesian data analysis (3rd ed.). New York, NY: CRC Press.
- Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.
- Gläscher, J., Daw, N. D., Dayan, P., & Doherty, J. P. O. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66, 585–595. doi:10.1016/j.neuron.2010.04.016
- Gläscher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cerebral Cortex, 19, 483–495. doi:10.1093/cercor/bhn098
- Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.
- Green, L., & Myerson, J. (2004). A Discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin, 130, 769–792. doi:10.1037/0033-2909.130.5.769
- Gu, X., Wang, X., Hula, A., Wang, S., Xu, S., Lohrenz, T. M., … Montague, P. R. (2015). Necessary, yet dissociable contributions of the insular and ventromedial prefrontal cortices to norm adaptation: Computational and lesion evidence in humans. Journal of Neuroscience, 35, 467–473. doi:10.1523/JNEUROSCI.2906-14.2015
- Guitart-Masip, M., Duzel, E., Dolan, R., & Dayan, P. (2014). Action versus valence in decision making. Trends in Cognitive Sciences, 18, 194–202. doi:10.1016/j.tics.2014.01.003
- Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. NeuroImage, 62, 154–166. doi:10.1016/j.neuroimage.2012.04.024
- Güth, W., Schmittberger, R., & Schwarze, B. (1982). An experimental analysis of ultimatum bargaining. Journal of Economic Behavior and Organization, 3, 367–388. doi:10.1016/0167-2681(82)
- Hampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2006). The role of the ventromedial prefrontal cortex in abstract state-based infer ence during decision making in humans. Journal of Neuroscience, 26, 8360–8367. doi:10.1523/JNEUROSCI.1010-06.2006
- Heerey, E. A., Matveeva, T. M., & Gold, J. M. (2011). Imagining the future: Degraded representations of future reward and events in schizophrenia. Journal of Abnormal Psychology, 120, 483–489. doi:10.1037/a0021810
- Heerey, E. A., Robinson, B. M., McMahon, R. P., & Gold, J. M. (2007). Delay discounting in schizophrenia. Cognitive Neuropsychiatry, 12, 213–221. doi:10.1080/13546800601005900
- Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15, 534–539.
- Hinson, J. M., Jameson, T. L., & Whitney, P. (2003). Impulsive decision making and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 298–306. doi:10.1037/0278-7393.29.2.298
- Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–1623.
- Huys, Q. J. M., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R. J., & Dayan, P. (2011). Disentangling the roles of approach, activation and valence in instrumental and Pavlovian responding. PLoS Computational Biology, 7, e1002028. doi:10.1371/journal.pcbi.1002028.t002
- Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19, 404413. doi:10.1038/nn.4238
- Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E. M., & Stephan, K. E. (2013). Hierarchical pre diction errors in midbrain and basal forebrain during sensory learning. Neuron, 80, 519–530. doi:10.1016/j.neuron.2013.09.009
- Insel, T. R. (2014).The NIMH Research Domain Criteria (RDoc) Project: Precision medicine for psychiatry. American Journal of Psychiatry, 171, 395–397. doi:10.1176/appi.ajp.2014.14020138
- Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 1625–1633. doi:10.1038/nn2007
- Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.
- Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. doi:10.1080/01621459.1995.10476572
- Katahira, K. (2016). How hierarchical models improve point estimates of model parameters at the individual level. Journal of Mathematical Psychology, 73, 37–58. doi:10.1016/j.jmp.2016.03.007
- Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27, 712–719. doi:10.1016/j.tins.2004.10.007
- Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446, 908–911. doi:10.1038/nature05631
- Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14, 293–300. doi:10.1016/j.tics.2010.05.001
- Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6, 299–312. doi:10.1177/1745691611406925
- Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd ed.). Boston, MA: Academic Press.
- Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55, 1–7. doi:10.1016/j.jmp.2010.08.013
- Lewandowsky, S., Farrell, S. (2010). Computational modeling in cognition: Principles and practice. New York, NY: Sage.
- Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011). Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 14, 1250–1252. doi:10.1038/nn.2904
- Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. Mineola, NY: Dover. doi:10.1037/14396-000
- Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049–3067. doi:10.1002/sim.3680
- Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.
- MacKillop, J. (2013). Integrating behavioral economics and behavioral genetics: Delayed reward discounting as an endophenotype for addictive disorders. Journal of the Experimental Analysis of Behavior, 99, 14–31. doi:10.1002/jeab.4
- Mars, R. B., Debener, S., Gladwin, T. E., Harrison, L. M., Haggard, P., Rothwell, J. C., & Bestmann, S. (2008). Trial-by-trial fluctuations in the event-related electroencephalogram reflect dynamic changes in the degree of surprise. Journal of Neuroscience, 28, 12539–12545. doi:10.1523/JNEUROSCI.2925-08.2008
- Matzke, D., Love, J., Wiecki, T. V., Brown, S. D., Logan, G. D., & Wagenmakers, E.-J. (2013). Release the BEESTS: Bayesian estimation of ex-Gaussian stop-signal reaction time distributions. Frontiers in Psychology, 4, 918. doi:10.3389/fpsyg.2013.00918
- Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In M. L. Commons, J. E. Mazur, J. A. Nevin, & H. Rachlin (Eds.), Quantitative analyses of behavior (Vol. 5, pp. 55–73). Hillsdale, NJ: Erlbaum.
- Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16, 72–80. doi:10.1016/j.tics.2011.11.018
- Montague, P. R., & Lohrenz, T. (2007). To detect and correct: Norm violations and their enforcement. Neuron, 56, 14–18. doi:10.1016/j.neuron.2007.09.020
- Murphy, F. C., Michael, A., Robbins, T. W., & Sahakian, B. J. (2003). Neuropsychological impairment in patients with major depressive disorder: The effects of feedback on task performance. Psychological Medicine, 33, 455–467. doi:10.1017/S0033291702007018
- Myung, I.-J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90–100. doi:10.1016/S0022-2496(02)00028-7
- Myung, I.-J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review, 4, 79–95. doi:10.3758/BF03210778
- O’Doherty, J., Critchley, H., Deichmann, R., & Dolan, R. J. (2003). Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. Journal of Neuroscience, 23, 7931–7939.
- O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454. doi:10.1126/science.1094285
- O’Doherty, J. P., Hampton, A., & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104, 35–53. doi:10.1196/annals.1390.022
- Plummer, M. (2003, March). JAGS: A program for analysis of Bayes ian graphical models using Gibbs sampling. Article presented at the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria.
- Rachlin, H., Raineri, A., & Cross, D. (1991). Subjective probability and delay. Journal of the Experimental Analysis of Behavior, 55, 233–244. doi:10.1901/jeab.1991.55-233
- Raja Beharelle, A., Polania, R., Hare, T. A., & Ruff, C. C. (2015). Transcranial stimulation over frontopolar cortex elucidates the choice attributes and neural mechanisms used to resolve exploration–exploitation trade-offs. Journal of Neuroscience, 35, 14544–14556. doi:10.1523/JNEUROSCI.2322-15.2015
- Rangel, A., Camerer, C. F., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9, 545–556. doi:10.1038/nrn2357
- Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision, 2, 237–279. doi:10.1037/dec0000030
- Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York, NY: Appleton-Century-Crofts.
- Rolls, E. T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, and Psychiatry, 57, 1518–1524.
- Samuelson, P. A. (1937). A note on measurement of utility. Review of Economic Studies, 4, 155–161. doi:10.2307/2967612
- Sanfey, A. G. (2003). The neural basis of economic decision-making in the Ultimatum Game. Science, 300, 1755–1758. doi:10.1126/science.1082976
- Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R. A., … Gray, J. R. (2008). Individual differences in delay discounting: Relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19, 904–911. doi:10.1111/j.1467-9280.2008.02175.x
- Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E.-J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science, 32, 1248–1284. doi:10.1080/03640210802414826
- Singmann, H., Brown, S., Gretton, M., Heathcote, A., Voss, A., Voss, J., & Terry, A. (2016). rtdists: Response time distributions [Software]. Retrieved from CRAN.R-project.org/package=rtdists
- Sokol-Hessner, P., Camerer, C. F., & Phelps, E. A. (2013). Emotion regulation reduces loss aversion and decreases amygdala responses to losses. Social Cognitive and Affective Neuroscience, 8, 341–350. doi:10.1093/scan/nss002
- Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., & Phelps, E. A. (2009). Thinking like a trader selectively reduces individuals’ loss aversion. Proceedings of the National Academy of Sciences, 106, 5035–5040. doi:10.1073/pnas.0806761106
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583–639. doi:10.1111/1467-9868.00353
- Stan Development Team. (2016). RStan: The R interface to Stan. R package version 2.14.1. Retrieved from https://cran.r-project.org/web/packages/rstan/citation.html
- Steingroever, H., Wetzels, R., & Wagenmakers, E.-J. (2014). Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision, 1, 161–183. doi:10.1037/dec0000005
- Stephan, K. E., Bach, D. R., Fletcher, P. C., Flint, J., Frank, M. J., Friston, K. J., … Breakspear, M. (2016). Charting the land scape of priority problems in psychiatry, part 1: Classification and diagnosis. Lancet: Psychiatry, 3, 77–83. doi:10.1016/S2215-0366(15)00361-2
- Stephan, K. E., Binder, E. B., Breakspear, M., Dayan, P., Johnstone, E. C., Meyer-Lindenberg, A., … Friston, K. J. (2016). Charting the landscape of priority problems in psychiatry, part 2: Pathogenesis and aetiology. Lancet: Psychiatry, 3, 84–90. doi:10.1016/S2215-0366(15)00360-0
- Stephan, K. E., Iglesias, S., Heinzle, J., & Diaconescu, A. O. (2015). Translational perspectives for computational neuroimaging. Neuron, 87, 716–732. doi:10.1016/j.neuron.2015.07.008
- Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication. Neuropsychologia, 38, 596–612.
- Thaler, R. H. (1988). Anomalies: The ultimatum game. Journal of Economic Perspectives, 2, 195–206. doi:10.2307/1942788
- Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315, 515–518. doi:10.1126/science.1134239
- Vassileva, J., Ahn, W.-Y., Weber, K. M., Busemeyer, J. R., Stout, J. C., Gonzalez, R., & Cohen, M. H. (2013). Computational modeling reveals distinct effects of HIV and history of drug use on decision-making processes in women. PLoS ONE, 8, e68962. doi:10.1371/journal.pone.0068962
- Vassileva, J., Gonzalez, R., Bechara, A., & Martin, E. M. (2007). Are all drug addicts impulsive? Effects of antisociality and extent of multidrug use on cognitive and motor impulsivity. Addictive Behaviors, 32, 3071–3076. doi:10.1016/j.addbeh.2007.04.017
- Vehtari, A., Gelman, A., & Gabry, J. (2016). Practical Bayesian model evaluation using leave-one-out cross-validation andWAIC. arXiv:1507.04544
- Vincent, B. T. (2016). Hierarchical Bayesian estimation and hypothesis testing for delay discounting tasks. Behavior Research Methods, 48, 1608–1620. doi:10.3758/s13428-015-0672-2
- Wabersich, D., & Vandekerckhove, J. (2014). The RWiener package: An R package providing distribution functions for the Wiener diffusion model. R Journal, 6, 49–56. Retrieved from https://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf
- Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804. doi:10.3758/BF03194105
- Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 93, 296–303. doi:10.1016/j.schres.2007.03.010
- Wang, X.-J., & Krystal, J. H. (2014). Computational psychiatry. Neuron, 84, 638–654. doi:10.1016/j.neuron.2014.10.018
- Wetzels, R., Vandekerckhove, J., & Tuerlinckx, F. (2010). Bayesian parameter estimation in the Expectancy Valence model of the Iowa Gambling Task. Journal of Mathematical Psychology, 54, 14–27. doi:10.1016/j.jmp.2008.12.001
- Wiecki, T. V., Poland, J., & Frank, M. J. (2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clinical Psychological Science, 3, 378–399. doi:10.1177/2167702614565359
- Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14. doi:10.3389/fninf.2013.00014
- Worthy, D. A., Pang, B., & Byrne, K. A. (2013). Decomposing the roles of perseveration and expected value representation in models of the Iowa gambling task. Frontiers in Psychology, 4, 640. doi:10.3389/fpsyg.2013.00640
- Xiang, T., Lohrenz, T., & Montague, P. R. (2013). Computational substrates of norms and their violations during social exchange. Journal of Neuroscience, 33, 1099–1108. doi:10.1523/JNEUROSCI.1642-12.2013
