Have a personal or library account? Click to login
Extending Power BI with Python and R: Perform advanced analysis using the power of analytical languages Cover

Extending Power BI with Python and R: Perform advanced analysis using the power of analytical languages

Paid access
|Apr 2024
Table of contents

Table of Contents

  1. Where and How to Use R and Python Scripts in Power BI
  2. Configuring R with Power BI
  3. Configuring Python with Power BI
  4. Solving Common Issues When Using Python and R in Power BI
  5. Importing Unhandled Data Objects
  6. Using Regular Expressions in Power BI
  7. Anonymizing and Pseudonymizing your Data in Power BI
  8. Logging Data from Power BI to External Sources
  9. Loading Large Datasets Also Beyond the Available RAM in Power BI
  10. Boosting Data Loading Speed in Power BI with Parquet Format
  11. Calling External APIs To Enrich Your Data
  12. Calculating Columns Using Complex Algorithms: Distances
  13. Calculating Columns Using Complex Algorithms: Fuzzy Matching
  14. Calculating Columns Using Complex Algorithms: Optimization Problems
  15. Adding Statistics Insights: Associations
  16. Adding Statistics Insights: Outliers and Missing Values
  17. Using Machine Learning Without Premium or Embedded Capacity
  18. Using SQL Server External Languages for Advanced Analytics and ML Integration in Power BI
  19. Exploratory Data Analysis
  20. Using the Grammar of Graphics in Python with plotnine
  21. Advanced Visualizations
  22. Interactive R Custom Visuals

PDF preview is not available for this content.

PDF ISBN: 978-1-83763-586-3
Publisher: Packt Publishing Limited
Copyright owner: © 2024 Packt Publishing Limited
Publication date: 2024
Language: English
Pages: 814
Extending Power BI with Python and R