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Summary. In this article, we prove the integrability of continuous func-
tions on n-dimensional real normed spaces, using the Mizar formalism. Gene-
ralizing selected theorems from the Mizar Mathematical Library, we prove the
integrability of continuous real n-variable functions and then, using the corre-
spondence between product-type and tuple-type spaces, we demonstrate the in-
tegrability of continuous functions on the desired multidimensional spaces.
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Introduction

This paper extends the formalization of measure theory in Mizar [15], [13],
[16] by developing foundational results for the integrability on continuous func-
tions on n-dimensional real normed spaces [2]. Related formalizations of this
area have also been carried out in Isabelle/HOL [14] and Coq [3]. The authors
have previously formalized several theorems on the integrability of continuous
functions of two and three real variables [9, 10], as well as the consistency betwe-
en two constructions of higher-dimensional spaces (less important from informal
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point of view [1]) – product-type and tuple-type – within simple real spaces [7];
this article is a natural continuation of [8], where this correspondence is further
explored [17]. First, a partial strenghtening of theorems from previous articles
[6], [9], [8] is given (Sect. 1). These are mainly generalizations considering the
case of empty sets.

In Section 2, we prove the integrability of continuous real n-variable func-
tions. Although we are dealing with functions on n-dimensional real normed
spaces of the direct product type, the essence of the proof is, of course, the pro-
of of the integrability on n-dimensional real number spaces of the direct product
type. In Section 3, we prove the integrability of continuous functions on tuple-
type n-dimensional real normed spaces, based on the results of the previous
section. Finally, the results obtained in this article can be generalized slightly,
but since the Riemann integral is defined on a non-empty closed interval wi-
thin the Mizar Mathematical Library [11], many articles need to be modified
to achieve this goal; we can foresee a revision of the MML [12], which will in-
corporate some of our enhancements in order to have more general form of the
original theorems listed in Sect. 1.

1. Preliminaries

Now we state the propositions:

(1) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If dom f = ∅,
then f is integrable on M .

(2) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. If dom f = ∅,
then f is integrable on M . The theorem is a consequence of (1).

(3) Generalized [6]:3:
Let us consider non zero natural numbers n, i, j, k, an n-element finite
sequence X, a j-element finite sequence X1, and a k-element finite se-
quence X2. Suppose i ¬ j ¬ k and X1 = X�j and X2 = X�k. Then
(
∏
FinSX1)(i) = (

∏
FinSX2)(i).

Proof: Define P[non zero natural number] ≡ if $1 ¬ j, then (
∏
FinSX1)($1)

= (
∏
FinSX2)($1). P[1]. For every non zero natural number m such that

P[m] holds P[m+ 1]. For every non zero natural number m, P[m]. �

(4) Generalized [6]:6:
Let us consider a non zero natural number n, an (n + 1)-element finite
sequence D, and an n-element finite sequence D1. Suppose D1 = D�n.
Then

∏
FSD =

∏
FSD1 ×D(n+ 1).
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Proof: Define P[non zero natural number] ≡ if $1 ¬ n, then (
∏
FinSD)($1)

= (
∏
FinSD1)($1). P[1]. For every non zero natural number k such that

P[k] holds P[k + 1]. For every non zero natural number k, P[k]. �

(5) Generalized [9]:51:
Let us consider a subset I of R, a closed interval subset J of R, a partial
function f from (the real normed space of R)× (the real normed space of
R) to the real normed space of R, and a partial function g from R×R to
R. Suppose I × J = dom f and f is continuous on I × J and f = g. Then

(i) Integral2(L-Meas, |R(g)|)�I is a partial function from R to R, and

(ii) Integral2(L-Meas,R(g))�I is a partial function from R to R.

(6) Missing case of [8]:6:
Let us consider a non zero natural number n, and an n-element finite
sequence D. If D is not non-empty, then

∏
FSD = ∅.

Proof: Consider i being an object such that i ∈ domD and D(i) = ∅.
Define P[non zero natural number] ≡ if i ¬ $1 ¬ n, then (

∏
FinSD)($1) =

∅. P[1]. For every non zero natural number k such that P[k] holds P[k+1].
For every non zero natural number k, P[k]. �

(7) Generalized [8]:6:
Let us consider a non zero natural number n, an n-element finite sequence
X, and an object x. Then x ∈

∏
FSX if and only if there exists an n-

element finite sequence p1 such that p1 ∈
∏
X and x = PtCarProd(p1).

The theorem is a consequence of (6).

(8) Generalized [8]:39:
Let us consider a non zero natural number n, and an n-element finite sequ-
ence D. Suppose for every natural number i such that i ∈ Seg n holds D(i)
is an element of L-Field. Then

∏
FSD is an element of

∏
Field L-Field(n).

The theorem is a consequence of (6).

(9) Generalized [8]:41:
Let us consider a non zero natural number n, and an n-element finite
sequence D. Suppose for every natural number i such that i ∈ Seg n holds
D(i) is an interval. Then

∏
FSD is an element of

∏
Field L-Field(n). The

theorem is a consequence of (8).

(10) Generalized [8]:48:
Let us consider a non zero natural number n, and n-element finite sequ-
ences X, Y. Suppose for every natural number i such that i ∈ Seg n holds
X(i) ⊆ Y (i). Then

∏
FSX ⊆

∏
FS Y. The theorem is a consequence of (6).

(11) Generalized [8]:50:
Let us consider non zero natural numbers n, k, a non empty set X, and
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an n-element finite sequence D. Suppose k ∈ Seg n and for every na-
tural number i such that i ∈ Seg n holds D(i) is a subset of X. Then
(
∏
FinSD)(k) is a subset of

∏
FS(Seg k 7−→ X).

Proof: Define P[non zero natural number] ≡ if $1 ∈ Seg n, then (
∏
FinSD)

($1) is a subset of
∏
FS(Seg $1 7−→ X). P[1]. For every non zero natural

number i such that P[i] holds P[i+ 1]. For every non zero natural number
k, P[k]. �

(12) Generalized [8]:71:
Let us consider a non zero natural number n, and an n-element finite
sequence D. Suppose for every natural number i such that i ∈ Seg n holds
D(i) ⊆ R. Then

∏
D = (CarProd(Seg n 7−→ R))◦(

∏
FSD).

Proof: Set I=CarProd(Seg n 7−→(the real normed space of R)).
∏
FSD ⊆

the carrier of
∏
FS(Seg n 7−→ (the real normed space of R)). For every

object x, x ∈
∏
D iff x ∈ I◦(

∏
FSD). �

2. Integrability of Continuous Real n-variable Functions

Now we state the propositions:

(13) (i)
∏
FS(Seg 1 7−→ (the real normed space of R)) = the real normed

space of R, and

(ii) ElmFin(Seg 1 7−→ (the real normed space of R), 1) = the real normed
space of R, and

(iii)
∏
FS(Seg 2 7−→ (the real normed space of R)) = (the real normed

space of R)× (the real normed space of R), and

(iv) ElmFin(Seg 2 7−→ (the real normed space of R), 2) = the real normed
space of R, and

(v)
∏
FS(Seg 3 7−→ (the real normed space of R)) = (the real normed

space of R)× (the real normed space of R)× (the real normed space
of R).

(14) Let us consider a non zero natural number n, a partial function f

from
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R, a partial function g from∏
FS(Seg n 7−→ R) × R to R, and an element p of

∏
FS(Seg n 7−→ R).

Suppose f is continuous on dom f and f = g. Then ProjPMap1(g, p) is
continuous.
Proof: Set P1 = ProjPMap1(g, p). For every real number y0 such that
y0 ∈ domP1 holds P1 is continuous in y0. �
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(15) Let us consider non empty sets X, Y, Z, a function T from X into Y,

a partial function f from X to Z, and a partial function g from Y to Z.
Suppose T is bijective and g = f · (T−1). Then

(i) dom g = T ◦ dom f , and

(ii) dom g = (◦T )(dom f).

(16) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R)× R to R, a partial function P2 from
∏
FS(Seg n 7−→ (the real normed

space of R)) to the real normed space of R, and an element q of R. Suppose
f is continuous on dom f and f = g and P2 = ProjPMap2(g, q). Then P2
is continuous on domP2.
Proof: For every point x0 of

∏
FS(Seg n 7−→ (the real normed space of

R)) such that x0 ∈ domP2 holds P2 is continuous in x0. �

(17) Let us consider a non zero natural number n, a partial function g from∏
FS(Seg n 7−→ R)× R to R, and an element q of R. Then

(i) (ProjPMap2(g, q)) · ((CarProd(Seg n 7−→ R))−1) is a partial function
from Rn to R, and

(ii) dom((ProjPMap2(g, q)) · ((CarProd(Seg n 7−→ R))−1)) =

(CarProd(Seg n 7−→ R))◦ dom(ProjPMap2(g, q)).

(18) Let us consider a non zero natural number n, a partial function f

from
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R, a partial function g from∏
FS(Seg n 7−→ R) × R to R, and an element p of

∏
FS(Seg n 7−→ R).

Suppose f is continuous on dom f and f = g. Then ProjPMap1(|g|, p) is
continuous. The theorem is a consequence of (14).

(19) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R)× R to R, a partial function P2 from
∏
FS(Seg n 7−→ (the real normed

space of R)) to the real normed space of R, and an element q of R. Suppose
f is continuous on dom f and f = g and P2 = ProjPMap2(|g|, q). Then
P2 is continuous on domP2.
Proof: Reconsider P1 = ProjPMap2(g, q) as a partial function from∏
FS(Seg n 7−→ (the real normed space of R)) to the real normed space

of R. P1 is continuous on domP1. For every point x0 of
∏
FS(Seg n 7−→

(the real normed space of R)) such that x0 ∈ domP2 holds P2 is continuous
in x0. �
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(20) Let us consider a non zero natural number n, a partial function g from∏
FS(Seg n 7−→ R)× R to R, and an element q of R. Then

(i) (ProjPMap2(|g|, q))·((CarProd(Seg n 7−→ R))−1) is a partial function
from Rn to R, and

(ii) dom((ProjPMap2(|g|, q)) · ((CarProd(Seg n 7−→ R))−1)) =

(CarProd(Seg n 7−→ R))◦ dom(ProjPMap2(|g|, q)).
(21) Let us consider a non zero natural number n, a partial function f

from
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R, a partial function g from∏
FS(Seg n 7−→ R)× R to R, and an element p of

∏
FS(Seg n 7−→ R). Sup-

pose f is uniformly continuous on dom f and f = g. Then ProjPMap1(g, p)
is uniformly continuous.
Proof: Set P1 = ProjPMap1(g, p). For every real number r such that
0 < r there exists a real number s such that 0 < s and for every real
numbers y1, y2 such that y1, y2 ∈ domP1 and |y1−y2| < s holds |P1(y1)−
P1(y2)| < r. �

(22) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R)× R to R, a partial function P2 from
∏
FS(Seg n 7−→ (the real normed

space of R)) to the real normed space of R, and an element s of R. Suppose
f is uniformly continuous on dom f and f = g and P2 = ProjPMap2(g, s).
Then P2 is uniformly continuous on domP2.
Proof: For every real number r such that 0 < r there exists a real number
s0 such that 0 < s0 and for every points x1, x2 of

∏
FS(Seg n 7−→ (the real

normed space of R)) such that x1, x2 ∈ domP2 and ‖x1 − x2‖ < s0 holds
‖P2/x1 − P2/x2‖ < r. �

(23) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R) × R to R, a partial function f̂ from R to R, and an element x of∏
FS(Seg n 7−→ R). Suppose f is continuous on dom f and f = g and f̂ =

ProjPMap1(R(g), x). Then f̂ is continuous. The theorem is a consequence
of (14).

(24) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R) × R to R, a partial function f̄ from
∏
FS(Seg n 7−→ (the real normed

space of R)) to the real normed space of R, and an element y of R. Suppose



Integrability of multivariable continuous functions 191

f is continuous on dom f and f = g and f̄ = ProjPMap2(R(g), y). Then
f̄ is continuous on dom f̄ . The theorem is a consequence of (16).

(25) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R) × R to R, a partial function f̂ from R to R, and an element x of∏
FS(Seg n 7−→ R). Suppose f is continuous on dom f and f = g and f̂ =

ProjPMap1(|R(g)|, x). Then f̂ is continuous. The theorem is a consequence
of (18).

(26) Let us consider a non zero natural number n, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R) × R to R, a partial function f̄ from
∏
FS(Seg n 7−→ (the real normed

space of R)) to the real normed space of R, and an element y of R. Suppose
f is continuous on dom f and f = g and f̄ = ProjPMap2(|R(g)|, y). Then
f̄ is continuous on dom f̄ . The theorem is a consequence of (19).

Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→ R),

a non empty, closed interval subset J of R, an element x of
∏
FS(Seg n 7−→

R), a partial function f from
∏
FS(Seg n 7−→ (the real normed space of R)) ×

(the real normed space of R) to the real normed space of R, a partial function
g from

∏
FS(Seg n 7−→ R)×R to R, and a partial function f̂ from R to R. Now

we state the propositions:

(27) Suppose x ∈ I and dom f = I × J and f is continuous on I × J and
f = g and f̂ = ProjPMap1(R(g), x). Then

(i) f̂�J is bounded, and

(ii) f̂ is integrable on J .

The theorem is a consequence of (14).

(28) Suppose x ∈ I and dom f = I × J and f is continuous on I × J and
f = g and f̂ = ProjPMap1(|R(g)|, x). Then

(i) f̂�J is bounded, and

(ii) f̂ is integrable on J .

The theorem is a consequence of (25).

(29) Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→

R), a closed interval subset J of R, an element x of
∏
FS(Seg n 7−→ R),

a partial function f from
∏
FS(Seg n 7−→ (the real normed space of R))×

(the real normed space of R) to the real normed space of R, a partial
function g from

∏
FS(Seg n 7−→ R)×R to R, and a partial function f̂ from

R to R. Suppose dom f = I×J and f is continuous on I×J and f = g and
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f̂ = ProjPMap1(R(g), x). Then f̂ is integrable on L-Meas. The theorem
is a consequence of (27) and (1).

(30) Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→

R), a non empty, closed interval subset J of R,anelement xof
∏
FS(Seg n 7−→

R), a partial function f from
∏
FS(Seg n 7−→ (the real normed space of

R))×(the real normed space of R) to the real normed space of R, a partial
function g from

∏
FS(Seg n 7−→ R)×R to R, and a partial function f̂ from

R to R. Suppose x ∈ I and dom f = I × J and f is continuous on I × J
and f = g and f̂ = ProjPMap1(R(g), x). Then

(i)
∫
J

f̂(x)dx =
∫
f̂ d L-Meas, and

(ii)
∫
J

f̂(x)dx =
∫

ProjPMap1(R(g), x) d L-Meas, and

(iii)
∫
J

f̂(x)dx = (Integral2(L-Meas,R(g)))(x).

The theorem is a consequence of (27).

(31) Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→

R), a closed interval subset J of R, an element x of
∏
FS(Seg n 7−→ R),

a partial function f from
∏
FS(Seg n 7−→ (the real normed space of R))×

(the real normed space of R) to the real normed space of R, a partial
function g from

∏
FS(Seg n 7−→ R)×R to R, and a partial function f̂ from

R to R. Suppose dom f = I×J and f is continuous on I×J and f = g and
f̂ = ProjPMap1(|R(g)|, x). Then f̂ is integrable on L-Meas. The theorem
is a consequence of (25) and (1).

(32) Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→

R), a non empty, closed interval subset J of R,anelement xof
∏
FS(Segn 7−→

R), a partial function f from
∏
FS(Seg n 7−→ (the real normed space of

R))×(the real normed space of R) to the real normed space of R, a partial
function g from

∏
FS(Seg n 7−→ R)×R to R, and a partial function f̂ from

R to R. Suppose x ∈ I and dom f = I × J and f is continuous on I × J
and f = g and f̂ = ProjPMap1(|R(g)|, x). Then

(i)
∫
J

f̂(x)dx =
∫
f̂ d L-Meas, and

(ii)
∫
J

f̂(x)dx =
∫

ProjPMap1(|R(g)|, x) d L-Meas, and

(iii)
∫
J

f̂(x)dx = (Integral2(L-Meas, |R(g)|))(x).
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The theorem is a consequence of (28).

(33) Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→

R), a subset J of R, a partial function f from
∏
FS(Seg n 7−→ (the real

normed space of R)) × (the real normed space of R) to the real normed
space of R, a partial function g from

∏
FS(Seg n 7−→ R) × R to R, and

an element E of σ(MeasRect(
∏
Field L-Field(n),L-Field)). Suppose I×J =

dom f and f is continuous on I × J and f = g and E = I × J . Then g is
E-measurable.
Proof: For every real number r, E∩LE-dom(g, r) ∈ σ(MeasRect(

∏
Field L-

Field(n),L-Field)). �

(34) Let us consider a non zero natural number n, a subset I of
∏
FS(Seg n 7−→

R), a closed interval subset J of R, a partial function f from
∏
FS(Seg n 7−→

(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from

∏
FS(Seg n 7−→ R) × R

to R. Suppose I × J = dom f and f is continuous on I × J and f = g.
Then

(i) Integral2(L-Meas, |R(g)|) is a partial function from
∏
FS(Seg n 7−→ R)

to R, and

(ii) Integral2(L-Meas,R(g)) is a partial function from
∏
FS(Seg n 7−→ R)

to R.

The theorem is a consequence of (32) and (30).

(35) Let us consider a non zero natural number n, an n-element finite sequence
D, a closed interval subset J of R, and a subset E of

∏
FS(Seg n 7−→

(the real normed space of R))× (the real normed space of R). Suppose for
every natural number i such that i ∈ Seg n holds D(i) is a closed interval
subset of R and E =

∏
FSD × J . Then E is compact. The theorem is

a consequence of (6).

(36) Let us consider a non zero natural number n, a set E, a partial function
f from

∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed

space of R) to the real normed space of R, and a partial function g from∏
FS(Seg n 7−→ R)× R to R. Suppose f = g and E ⊆ dom f .

Then f is uniformly continuous on E if and only if for every real
number e such that 0 < e there exists a real number r such that 0 < r

and for every points x1, x2 of
∏
FS(Seg n 7−→ (the real normed space of

R)) and for every real numbers y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2, y2〉〉 ∈ E and
‖x2 − x1‖ < r and |y2 − y1| < r holds |g(〈〈x2, y2〉〉)− g(〈〈x1, y1〉〉)| < e.
Proof: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every points z1, z2 of

∏
FS(Seg n 7−→ (the real
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normed space of R))× (the real normed space of R) such that z1, z2 ∈ E
and ‖z1 − z2‖ < r holds ‖f/z1 − f/z2‖ < e. �

(37) Let us consider a non zero natural number n, an n-element finite sequence
D, a closed interval subset J of R, a partial function f from

∏
FS(Seg n 7−→

(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from

∏
FS(Seg n 7−→ R) × R

to R.
Suppose for every natural number i such that i ∈ Seg n holds D(i) is

a closed interval subset of R and f = g and f is continuous on
∏
FSD×J .

Let us consider a real number e. Suppose 0 < e. Then there exists a real
number r such that

(i) 0 < r, and

(ii) for every points x1, x2 of
∏
FS(Seg n 7−→ (the real normed space

of R)) and for every real numbers y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2,
y2〉〉 ∈

∏
FSD × J and ‖x2 − x1‖ < r and |y2 − y1| < r holds |g(〈〈x2,

y2〉〉)− g(〈〈x1, y1〉〉)| < e.

Proof:
∏
FSD is a subset of

∏
FS(Seg n 7−→ R). There exists a subset I of∏

FS(Seg n 7−→ (the real normed space of R)) such that I =
∏
FSD and I

is compact. Consider I being a subset of
∏
FS(Seg n 7−→ (the real normed

space of R)) such that I =
∏
FSD and I is compact. Reconsider J1 = J

as a subset of the real normed space of R. Reconsider E =
∏
FSD × J1

as a subset of
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real

normed space of R). E is compact. �

(38) Let us consider a set X, a real normed space S, a partial function f from
S to the real normed space of R, and a partial function g from X to R. If
f = g, then ‖f‖ = |g|.

(39) Let us consider a non zero natural number n, an n-element finite sequence
D, a closed interval subset J of R, a partial function f from

∏
FS(Seg n 7−→

(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from

∏
FS(Seg n 7−→ R) × R

to R.
Suppose for every natural number i such that i ∈ Seg n holds D(i) is

a closed interval subset of R and f is continuous on
∏
FSD×J and f = g.

Let us consider a real number e. Suppose 0 < e. Then there exists a real
number r such that

(i) 0 < r, and

(ii) for every points x1, x2 of
∏
FS(Seg n 7−→ (the real normed space

of R)) and for every real numbers y1, y2 such that 〈〈x1, y1〉〉, 〈〈x2,
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y2〉〉 ∈
∏
FSD × J and ‖x2 − x1‖ < r and |y2 − y1| < r holds ||g|(〈〈x2,

y2〉〉)− |g|(〈〈x1, y1〉〉)| < e.

The theorem is a consequence of (38) and (37).

Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of

∏
FS(Seg n 7−→ (the real normed space of R)), a closed interval

subset J of R, a partial function f from
∏
FS(Seg n 7−→ (the real normed space

of R)) × (the real normed space of R) to the real normed space of R, a partial
function g from

∏
FS(Seg n 7−→ R) × R to R, and a partial function G2 from∏

FS(Seg n 7−→ (the real normed space of R)) to the real normed space of R.
Now we state the propositions:

(40) Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and I =

∏
FSD and I × J = dom f and f

is continuous on I × J and f = g and G2 = Integral2(L-Meas, |R(g)|)�I.
Then G2 is continuous on I.
Proof: Consider c, d being real numbers such that J = [c, d]. Set R0 =
R(g). For every element x of

∏
FS(Seg n 7−→ R) and for every element y of

R such that x ∈ I and y ∈ J holds (ProjPMap1(|R0|, x))(y) = |R0|(x, y)
and |R0|(x, y) = |g(〈〈x, y〉〉)| and |R0|(x, y) = |g|(〈〈x, y〉〉).

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements x1, x2 of

∏
FS(Seg n 7−→ R) and

for every points x4, x5 of
∏
FS(Seg n 7−→ (the real normed space of R))

such that x4 = x1 and x5 = x2 and ‖x5 − x4‖ < r and x1, x2 ∈ I for
every element y of R such that y ∈ J holds |(ProjPMap1(|R0|, x2))(y) −
(ProjPMap1(|R0|, x1))(y)| < e.

∏
FSD is a subset of

∏
FS(Seg n 7−→ R). �

(41) Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and I =

∏
FSD and I × J = dom f and f is

continuous on I×J and f = g and G2 = Integral2(L-Meas,R(g))�I. Then
G2 is continuous on I.
Proof: Consider c, d being real numbers such that J = [c, d]. For every
real number e such that 0 < e there exists a real number r such that 0 < r

and for every points x1, x2 of
∏
FS(Seg n 7−→ (the real normed space of

R)) such that ‖x2 − x1‖ < r and x1, x2 ∈ I for every real number y such
that y ∈ J holds |g(〈〈x2, y〉〉)− g(〈〈x1, y〉〉)| < e. Set R0 = R(g).

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements x1, x2 of

∏
FS(Seg n 7−→ R) and

for every points x4, x5 of
∏
FS(Seg n 7−→ (the real normed space of R))

such that x4 = x1 and x5 = x2 and ‖x5 − x4‖ < r and x1, x2 ∈ I for
every element y of R such that y ∈ J holds |(ProjPMap1(R0, x2))(y) −
(ProjPMap1(R0, x1))(y)| < e.

∏
FSD is a subset of

∏
FS(Seg n 7−→ R). �
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(42) Let us consider a non zero natural number n, an n-element finite sequence
D, a partial function g from

∏
FS(Seg n 7−→ (the real normed space of R))

to the real normed space of R, and a partial function f from
∏
FS(Seg n 7−→

R) to R.
Suppose f = g and g is continuous on

∏
FSD and

∏
FSD ⊆ dom g

and for every natural number i such that i ∈ Seg n holds D(i) is a closed
interval subset of R. Let us consider a real number e. Suppose 0 < e. Then
there exists a real number r such that

(i) 0 < r, and

(ii) for every n-element finite sequences x, y of elements of R such that
PtCarProd(x), PtCarProd(y) ∈

∏
FSD and for every natural number

i such that i ∈ domD there exist real numbers x3, y3 such that
x3 = x(i) and y3 = y(i) and |x3 − y3| < r holds |f(PtCarProd(x))−
f(PtCarProd(y))| < e.

Proof: Set S = Seg n 7−→ (the real normed space of R).
∏
FSD is a subset

of
∏
FS(Seg n 7−→ R). There exists a subset I of

∏
FS(Seg n 7−→ (the real

normed space of R)) such that I =
∏
FSD and I is compact. Consider E

being a subset of
∏
FS S such that E =

∏
FSD and E is compact. Consider

r0 being a real number such that 0 < r0 and for every points z1, z2 of
∏
FS S

such that z1, z2 ∈ E and ‖z1−z2‖ < r0 holds ‖g/z1−g/z2‖ < e. Set r1 = r0
2 .

Set r = r1
n . Reconsider z1 = PtCarProd(x), z2 = PtCarProd(y) as a point

of
∏
FS S. Reconsider m = n− 1 as a natural number.

Consider p2 being an (m+1)-element finite sequence such that z1−z2 =
PtCarProd(p2). Consider n1 being an element of Rm+1 such that for every
non zero natural number i such that i ¬ m + 1 there exists a point p3 of
ElmFin(S, i) such that p3 = p2(i) and n1(i) = ‖p3‖ and ‖z1 − z2‖ = |n1|.
For every natural number i such that i ∈ domn1 holds 0 ¬ n1(i) ¬ r. �

(43) Let us consider a non zero natural number n, an n-element finite sequence
D, a partial function f from

∏
FS(Seg n 7−→ (the real normed space of R))

to the real normed space of R, and a partial function g from
∏
FS(Seg n 7−→

R) to R. Suppose f = g and for every natural number i such that i ∈ Seg n
holds D(i) is a closed interval subset of R and f is continuous on

∏
FSD

and dom f =
∏
FSD. Then g is integrable on MeasureProd(L-Meas(n)).

Proof: Define P[non zero natural number] ≡ for every $1-element finite
sequence D for every partial function f from

∏
FS(Seg $1 7−→ (the real

normed space of R)) to the real normed space of R for every partial func-
tion g from

∏
FS(Seg $1 7−→ R) to R such that f = g and for every natural

number i such that i ∈ Seg $1 holds D(i) is a closed interval subset of R
and f is continuous on

∏
FSD and dom f =

∏
FSD holds g is integrable
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on MeasureProd(L-Meas($1)).
P[1] by (13), [7, (37)], [4, (72), (75)]. For every non zero natural number

n such that P[n] holds P[n+ 1] by [8, (38)], (9), (42), [8, (66)]. For every
non zero natural number n, P[n]. �

(44) Let us consider a non zero natural number n, an n-element finite se-
quence D, a subset J of R, an element y of R, a partial function f

from
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R, and a partial function g from∏
FS(Seg n 7−→ R) × R to R. Suppose for every natural number i such

that i ∈ Seg n holds D(i) is a closed interval subset of R and y ∈ J and
dom f =

∏
FSD × J and f is continuous on

∏
FSD × J and f = g. Then

(i) dom(ProjPMap2(R(g), y)) =
∏
FSD, and

(ii) ProjPMap2(R(g), y) is integrable on MeasureProd(L-Meas(n)).

The theorem is a consequence of (11), (24), and (43).

(45) Let us consider a non zero natural number n, an n-element finite sequ-
ence D, a subset J of R, an element y of R, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R)× R to R, and a partial function f̄ from
∏
FS(Seg n 7−→ R) to R. Sup-

pose for every natural number i such that i ∈ Seg n holds D(i) is a closed
interval subset of R and y ∈ J and dom f =

∏
FSD×J and f is continuous

on
∏
FSD × J and f = g and f̄ = ProjPMap2(R(g), y). Then

(i) f̄ is integrable on MeasureProd(L-Meas(n)), and

(ii)
∫

ProjPMap2(R(g), y) d MeasureProd(L-Meas(n)) =

(Integral1(MeasureProd(L-Meas(n)),R(g)))(y).

The theorem is a consequence of (44).

(46) Let us consider a non zero natural number n, an n-element finite se-
quence D, a subset J of R, an element y of R, a partial function f

from
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R, and a partial function g from∏
FS(Seg n 7−→ R) × R to R. Suppose for every natural number i such

that i ∈ Seg n holds D(i) is a closed interval subset of R and y ∈ J and
dom f =

∏
FSD × J and f is continuous on

∏
FSD × J and f = g. Then

(i) dom(ProjPMap2(|R(g)|, y)) =
∏
FSD, and

(ii) ProjPMap2(|R(g)|, y) is integrable on MeasureProd(L-Meas(n)).

The theorem is a consequence of (11), (26), and (43).
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(47) Let us consider a non zero natural number n, an n-element finite se-
quence D, a subset J of R, an element y of R, a partial function f

from
∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R, a partial function g from∏
FS(Seg n 7−→ R)× R to R, and an element E of

∏
Field L-Field(n). Sup-

pose for every natural number i such that i ∈ Seg n holds D(i) is a closed
interval subset of R and y ∈ J and dom f =

∏
FSD×J and f is continuous

on
∏
FSD × J and f = g and E =

∏
FSD. Then ProjPMap2(|R(g)|, y) is

E-measurable. The theorem is a consequence of (46).

(48) Let us consider a non zero natural number n, an n-element finite sequ-
ence D, a subset J of R, an element y of R, a partial function f from∏
FS(Seg n 7−→ (the real normed space of R))× (the real normed space of

R) to the real normed space of R, a partial function g from
∏
FS(Seg n 7−→

R)× R to R, and a partial function f̄ from
∏
FS(Seg n 7−→ R) to R. Sup-

pose for every natural number i such that i ∈ Seg n holds D(i) is a closed
interval subset of R and y ∈ J and dom f =

∏
FSD×J and f is continuous

on
∏
FSD × J and f = g and f̄ = ProjPMap2(|R(g)|, y). Then

(i) f̄ is integrable on MeasureProd(L-Meas(n)), and

(ii)
∫

ProjPMap2(|R(g)|, y) d MeasureProd(L-Meas(n)) =
(Integral1(MeasureProd(L-Meas(n)), |R(g)|))(y).

The theorem is a consequence of (46).

(49) Let us consider a non zero natural number n, an n-element finite sequ-
ence D, a subset I of

∏
FS(Seg n 7−→ (the real normed space of R)), and

an interval J . Suppose for every natural number i such that i ∈ Seg n
holds D(i) is an interval and I =

∏
FSD. Then

(i) I × J is a subset of
∏
FS(Seg n 7−→ (the real normed space of R)) ×

(the real normed space of R), and

(ii) I × J ∈ σ(MeasRect(
∏
Field L-Field(n),L-Field)).

The theorem is a consequence of (9).

(50) Let us consider a non zero natural number n, an n-element finite sequence
D, a subset J of R, a partial function f from

∏
FS(Seg n 7−→ (the real

normed space of R)) × (the real normed space of R) to the real normed
space of R, and a partial function g from

∏
FS(Seg n 7−→ R) × R to R.

Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and

∏
FSD× J = dom f and f is continuous

on
∏
FSD × J and f = g. Then

(i) Integral1(MeasureProd(L-Meas(n)), |R(g)|)�J is a partial function from
R to R, and
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(ii) Integral1(MeasureProd(L-Meas(n)),R(g))�J is a partial function from
R to R.

The theorem is a consequence of (48) and (45).

(51) Let us consider a non zero natural number n, an element E1 of
∏
Field L-

Field(n), and an element E2 of L-Field. Then

(i) E1 × E2 ∈ σ(MeasRect(
∏
Field L-Field(n),L-Field)), and

(ii) (MeasureProd(L-Meas(n+1)))(E1×E2) = (MeasureProd(L-Meas(n)))

(E1) · (L-Meas)(E2).

(52) Let us consider a non zero natural number n, and an n-element finite
sequence D. Suppose for every natural number i such that i ∈ Seg n holds
D(i) is a closed interval subset of R. Then there exists a real number r
and there exists an element E of

∏
Field L-Field(n) such that E =

∏
FSD

and (MeasureProd(L-Meas(n)))(E) = r and 0 ¬ r.
Proof: Define P[non zero natural number] ≡ for every $1-element finite
sequence D such that for every natural number i such that i ∈ Seg $1
holds D(i) is a closed interval subset of R there exists a real number r
and there exists an element E of

∏
Field L-Field($1) such that E =

∏
FSD

and (MeasureProd(L-Meas($1)))(E) = r and 0 ¬ r. P[1] by [7, (41)], [5,
(5)], [7, (45)]. For every non zero natural number n such that P[n] holds
P[n+ 1]. For every non zero natural number n, P[n]. �

Let us consider a non zero natural number n, an n-element finite sequence D,
a closed interval subset J of R, a partial function f from

∏
FS(Seg n 7−→ (the real

normed space of R))× (the real normed space of R) to the real normed space of
R, a partial function g from

∏
FS(Seg n 7−→ R)×R to R, and a partial function

G1 from R to R. Now we state the propositions:

(53) Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and

∏
FSD× J = dom f and f is continuous

on
∏
FSD × J and f = g and G1 =

Integral1(MeasureProd(L-Meas(n)), |R(g)|)�J . Then G1 is continuous.
Proof: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every real numbers y1, y2 such that |y2− y1| < r

and y1, y2 ∈ J for every point x of
∏
FS(Seg n 7−→ (the real normed space

of R)) such that x ∈
∏
FSD holds ||g|(〈〈x, y2〉〉) − |g|(〈〈x, y1〉〉)| < e. Set

R0 = R(g). For every element x of
∏
FS(Seg n 7−→ R) and for every element

y of R such that x ∈
∏
FSD and y ∈ J holds (ProjPMap2(|R0|, y))(x) =

|R0|(x, y) and |R0|(x, y) = |g(〈〈x, y〉〉)| and |R0|(x, y) = |g|(〈〈x, y〉〉).
For every real number e such that 0 < e there exists a real number r

such that 0 < r and for every elements y1, y2 of R such that |y2 − y1| < r
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and y1, y2 ∈ J for every element x of
∏
FS(Seg n 7−→ R) such that x ∈∏

FSD holds |(ProjPMap2(|R0|, y2))(x) − (ProjPMap2(|R0|, y1))(x)| < e.
For every real numbers y0, r such that y0 ∈ J and 0 < r there exists a real
number s such that 0 < s and for every real number y1 such that y1 ∈ J
and |y1 − y0| < s holds |G1(y1)−G1(y0)| < r. �

(54) Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and

∏
FSD×J = dom f and f is continuous on∏

FSD×J and f = g andG1 = Integral1(MeasureProd(L-Meas(n)),R(g))�J .
Then G1 is continuous.
Proof: Set I =

∏
FSD. For every real number e such that 0 < e there

exists a real number r such that 0 < r and for every real numbers y1, y2
such that |y2 − y1| < r and y1, y2 ∈ J for every point x of

∏
FS(Seg n 7−→

(the real normed space of R)) such that x ∈ I holds |g(〈〈x, y2〉〉) − g(〈〈x,
y1〉〉)| < e. Set R0 = R(g).

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements y1, y2 of R such that |y2 − y1| < r

and y1, y2 ∈ J for every element x of
∏
FS(Seg n 7−→ R) such that x ∈ I

holds |(ProjPMap2(R0, y2))(x)− (ProjPMap2(R0, y1))(x)| < e. For every
real numbers y0, r such that y0 ∈ J and 0 < r there exists a real number
s such that 0 < s and for every real number y1 such that y1 ∈ J and
|y1 − y0| < s holds |G1(y1)−G1(y0)| < r. �

(55) Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of

∏
FS(Seg n 7−→ (the real normed space of R)), a closed

interval subset J of R, a partial function f from
∏
FS(Seg n 7−→ (the real

normed space of R)) × (the real normed space of R) to the real normed
space of R, and a partial function g from

∏
FS(Seg n 7−→ R) × R to R.

Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and I =

∏
FSD and I × J = dom f and f is

continuous on I × J and f = g. Then

(i) g is integrable on ProdMeas(MeasureProd(L-Meas(n)),L-Meas), and

(ii) for every element x of
∏
FS(Seg n 7−→ R),

(Integral2(L-Meas, |R(g)|))(x) < +∞, and

(iii) for every element y of R,

(Integral1(MeasureProd(L-Meas(n)), |R(g)|))(y) < +∞, and

(iv) for every element U of
∏
Field L-Field(n), Integral2(L-Meas,R(g)) is

U -measurable, and

(v) for every element V of L-Field,

Integral1(MeasureProd(L-Meas(n)),R(g)) is V -measurable, and
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(vi) Integral2(L-Meas,R(g)) is integrable on MeasureProd(L-Meas(n)), and

(vii) Integral1(MeasureProd(L-Meas(n)),R(g)) is integrable on L-Meas, and

(viii)
∫
g d ProdMeas(MeasureProd(L-Meas(n)),L-Meas) =∫
Integral2(L-Meas,R(g)) d MeasureProd(L-Meas(n)), and

(ix)
∫
g d ProdMeas(MeasureProd(L-Meas(n)),L-Meas) =∫
Integral1(MeasureProd(L-Meas(n)),R(g)) d L-Meas.

(56) Let us consider a non zero natural number n, an (n + 1)-element fini-
te sequence D, a partial function f from

∏
FS(Seg(n + 1) 7−→ (the real

normed space of R)) to the real normed space of R, a partial function
g from

∏
FS(Seg(n + 1) 7−→ R) to R, and a partial function g0 from∏

FS(Seg n 7−→ R) × R to R. Suppose f = g and g0 = g and for every
natural number i such that i ∈ Seg(n + 1) holds D(i) is a closed interval
subset of R and f is continuous on

∏
FSD and dom f =

∏
FSD. Then

(i) Integral2(L-Meas,R(g0)) is integrable on MeasureProd(L-Meas(n)),
and

(ii)
∫
g d MeasureProd(L-Meas(n+ 1)) =∫
g0 d ProdMeas(MeasureProd(L-Meas(n)),L-Meas).

Proof: Reconsider D3 = D�n as an n-element finite sequence. For every
natural number i such that i ∈ Seg n holds D3(i) is a closed interval subset
of R.

∏
FSD3 is a subset of

∏
FS(Seg n 7−→ R). Reconsider D0 =

∏
FSD3

as a subset of
∏
FS(Seg n 7−→ (the real normed space of R)). Reconsider

D1 = D(n+ 1) as a closed interval subset of R.
∏
FSD = D0 ×D1. �

(57) Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of

∏
FS(Seg n 7−→ (the real normed space of R)), a closed

interval subset J of R, a partial function f from
∏
FS(Seg n 7−→ (the real

normed space of R)) × (the real normed space of R) to the real normed
space of R, a partial function g from

∏
FS(Seg n 7−→ R) × R to R, and

a partial function G2 from
∏
FS(Seg n 7−→ R) to R.

Suppose for every natural number i such that i ∈ Seg n holds D(i) is
a closed interval subset of R and I =

∏
FSD and I × J = dom f and f is

continuous on I×J and f = g and G2 = Integral2(L-Meas,R(g))�
∏
FSD.

Then
∫

R(g) d ProdMeas(MeasureProd(L-Meas(n)),L-Meas) =∫
G2 d MeasureProd(L-Meas(n)).
Proof: Set R0 = R(g). Set R2 = Integral2(L-Meas, R0). Reconsider
I0 =

∏
FSD as a subset of

∏
FS(Seg n 7−→ R). Set N1 = (

∏
FS(Seg n 7−→

R)) \ I0. Reconsider F0 = R2�I0, F1 = R2�N1 as a partial function from∏
FS(Seg n 7−→ R) to R. I0 is an element of

∏
Field L-Field(n). For every

element x of
∏
FS(Seg n 7−→ R) such that x ∈ domF1 holds F1(x) = 0. �
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(58) Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of

∏
FS(Seg n 7−→ (the real normed space of R)), a non empty,

closed interval subset J of R, a partial function f from
∏
FS(Seg n 7−→

(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from

∏
FS(Seg n 7−→ R)×R to R,

and a partial function G1 from R to R.
Suppose for every natural number i such that i ∈ Seg n holds D(i) is

a closed interval subset of R and I =
∏
FSD and I × J = dom f and f is

continuous on I×J and f=g and G1=Integral1(MeasureProd(L-Meas(n)),
R(g))�J . Then

∫
R(g) d ProdMeas(MeasureProd(L-Meas(n)),L-Meas) =∫

J

G1(x)dx.

Proof: Set R0 = R(g). SetN2 = R\J . Set R1 = Integral1(MeasureProd(L-
Meas(n)), R0). Reconsider F0 = R1�J , F1 = R1�N2 as a partial function
from R to R. G1�J is bounded and G1 is integrable on J .

∏
FSD is a subset

of
∏
FS(Seg n 7−→ R). For every element y of R such that y ∈ domF1 holds

F1(y) = 0. �

3. Integrability of Continuous Functions on n-dimensional Real
Normed Spaces

Now we state the propositions:

(59) Let us consider a non zero natural number n, and a partial function
f from

∏
(Seg n 7−→ (the real normed space of R)) to the real normed

space of R. Then f · (CarProd(Seg n 7−→ (the real normed space of R)))
is a partial function from

∏
FS(Seg n 7−→ (the real normed space of R)) to

the real normed space of R.

(60) Let us consider a non zero natural number n, an n-element finite sequence
D, and a partial function f from

∏
(Seg n 7−→ (the real normed space of

R)) to the real normed space of R. Suppose for every natural number i
such that i ∈ Seg n holds D(i) is a subset of R and f is continuous on
dom f and dom f =

∏
D. Then f · (CarProd(Seg n 7−→ (the real normed

space of R))) is continuous on
∏
FSD.

Proof: Set I = CarProd(Seg n 7−→ (the real normed space of R)). Con-
sider C being a non-empty, n-element finite sequence such that C =
Seg n 7−→ α and

∏
FSC = the carrier of

∏
FS(Seg n 7−→ (the real normed

space of R)) and I = CarProd(C) and I is bijective, where α is the re-
al normed space of R. Reconsider F = f · I as a partial function from
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∏
FS(Seg n 7−→ (the real normed space of R)) to the real normed space of

R.
∏
FSD is a subset of

∏
FS(Seg n 7−→ R).

For every object x, x ∈
∏
D iff x ∈ I◦(

∏
FSD). For every point x0 of∏

FS(Seg n 7−→ (the real normed space of R)) and for every real number r
such that x0 ∈

∏
FSD and 0 < r there exists a real number s such that

0 < s and for every point x1 of
∏
FS(Seg n 7−→ (the real normed space of

R)) such that x1 ∈
∏
FSD and ‖x1 − x0‖ < s holds ‖F/x1 − F/x0‖ < r. �

(61) Let us consider a non zero natural number n. Then

(i) 〈En, ‖ · ‖〉 =
∏

(Seg n 7−→ (the real normed space of R)), and

(ii) Rn = the carrier of
∏

(Seg n 7−→ (the real normed space of R)), and

(iii) Rn =
∏

(Seg n 7−→ R).

(62) Let us consider a non zero natural number n, an n-element finite sequence
D, and a partial function f from 〈En, ‖ · ‖〉 to the real normed space of
R. Suppose for every natural number i such that i ∈ Seg n holds D(i)
is a subset of R and f is continuous on dom f and dom f =

∏
D. Then

f · (CarProd(Seg n 7−→ (the real normed space of R))) is continuous on∏
FSD. The theorem is a consequence of (61) and (60).

(63) Let us consider a non zero natural number n, an n-element finite se-
quence D, a partial function f from 〈En, ‖ · ‖〉 to the real normed space
of R, a partial function g from Rn to R, and a partial function G from∏
FS(Seg n 7−→ R) to R. Suppose for every natural number i such that

i ∈ Seg n holds D(i) is a closed interval subset of R and f is continuous on∏
D and dom f =

∏
D and g = f and G = f · (CarProd(Seg n 7−→ R)).

Then

(i) G is integrable on MeasureProd(L-Meas(n)), and

(ii) g is integrable on XL-Meas(n), and

(iii)
∫
g d XL-Meas(n) =

∫
G d MeasureProd(L-Meas(n)).

Proof: Set I = CarProd(Seg n 7−→ (the real normed space of R)). Con-
sider C being a non-empty, n-element finite sequence such that C =
Seg n 7−→ α and

∏
FSC = the carrier of

∏
FS(Seg n 7−→ (the real normed

space of R)) and I = CarProd(C) and I is bijective, where α is the real
normed space of R. 〈En, ‖ · ‖〉 =

∏
(Seg n 7−→ (the real normed space of

R)). The carrier of 〈En, ‖ · ‖〉 = Rn. Reconsider F = f · I as a partial
function from

∏
FS(Seg n 7−→ (the real normed space of R)) to the real

normed space of R. F is continuous on
∏
FSD. For every natural num-

ber i such that i ∈ Seg n holds D(i) ⊆ R.
∏
FSD ⊆

∏
FS(Seg n 7−→ R).∏

D = I◦(
∏
FSD). �
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(64) Let us consider a non zero natural number n, an (n + 1)-element finite
sequence D, a partial function f from 〈En+1, ‖ · ‖〉 to the real normed
space of R, a partial function G from

∏
FS(Seg(n + 1) 7−→ R) to R, and

a partial function g0 from
∏
FS(Seg n 7−→ R)× R to R. Suppose for every

natural number i such that i ∈ Seg(n + 1) holds D(i) is a closed interval
subset of R and f is continuous on

∏
D and dom f =

∏
D and G =

f · (CarProd(Seg(n+ 1) 7−→ R)) and g0 = G. Then

(i) for every element x of
∏
FS(Seg n 7−→ R),

(Integral2(L-Meas, |R(g0)|))(x) < +∞, and

(ii) for every element x of
∏
FS(Seg n 7−→ R), ProjPMap1(R(g0), x) is

integrable on L-Meas, and

(iii) for every element U of
∏
Field L-Field(n), Integral2(L-Meas,R(g0)) is

U -measurable, and

(iv) Integral2(L-Meas,R(g0)) is integrable on MeasureProd(L-Meas(n)),
and

(v)
∫
G d MeasureProd(L-Meas(n+ 1)) =∫
Integral2(L-Meas,R(g0)) d MeasureProd(L-Meas(n)).

Proof: Set I = CarProd(Seg(n + 1) 7−→ (the real normed space of
R)). For every natural number i such that i ∈ Seg(n + 1) holds D(i) ⊆
R. For every natural number i such that i ∈ Seg(n + 1) holds D(i) ⊆
(Seg(n + 1) 7−→ R)(i).

∏
FSD ⊆

∏
FS(Seg(n + 1) 7−→ R). Reconsider

D1 = D�n as an n-element finite sequence. For every natural number i
such that i ∈ Seg n holds D1(i) ⊆ (Seg n 7−→ R)(i).

∏
FSD1 is a subset of∏

FS(Seg n 7−→ R). Reconsider I1 =
∏
FSD1 as a subset of

∏
FS(Seg n 7−→

(the real normed space of R)).
Reconsider J1 = D(n+ 1) as a closed interval subset of R. Reconsider

f0 = f · I as a partial function from
∏
FS(Seg n 7−→ (the real normed

space of R))× (the real normed space of R) to the real normed space of R.
f · I is continuous on

∏
FSD.

∏
FSD =

∏
FSD1 ×D(n+ 1). dom(f · I) =

I−1(I◦(
∏
FSD)). dom f0 = I1 × J1. For every natural number i such that

i ∈ Seg n holds D1(i) is a closed interval subset of R. For every element
x of

∏
FS(Seg n 7−→ R), ProjPMap1(R(g0), x) is integrable on L-Meas.∫

G d MeasureProd(L-Meas(n+ 1)) =∫
g0 d ProdMeas(MeasureProd(L-Meas(n)),L-Meas). �

(65) Let us consider a non zero natural number n, an (n + 1)-element finite
sequence D, an n-element finite sequence D1, a partial function f from
〈En+1, ‖ · ‖〉 to the real normed space of R, a partial function G from∏
FS(Seg(n + 1) 7−→ R) to R, a partial function g0 from

∏
FS(Seg n 7−→
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R) × R to R, a non empty, closed interval subset D2 of R, an element x
of
∏
FS(Seg n 7−→ R), and a partial function P3 from R to R. Suppose

D1 = D�n and for every natural number i such that i ∈ Seg(n+ 1) holds
D(i) is a subset of R and f is continuous on

∏
D and dom f =

∏
D and

G = f · (CarProd(Seg(n+ 1) 7−→ R)) and g0 = G and D2 = D(n+ 1) and
x ∈
∏
FSD1 and P3 = ProjPMap1(|R(g0)|, x). Then

(i) dom(ProjPMap1(|R(g0)|, x)) = D(n+ 1), and

(ii) P3�D2 is continuous and bounded, and

(iii) P3 is integrable on D2, and

(iv) ProjPMap1(|R(g0)|, x) is integrable on L-Meas, and

(v)
∫

ProjPMap1(|R(g0)|, x) d L-Meas =
∫
D2

P3(x)dx, and

(vi) (Integral2(L-Meas, |R(g0)|))(x) =
∫
D2

P3(x)dx.

Proof: Set I = CarProd(Seg(n + 1) 7−→ (the real normed space of
R)). For every natural number i such that i ∈ Seg(n + 1) holds D(i) ⊆
R. For every natural number i such that i ∈ Seg(n + 1) holds D(i) ⊆
(Seg(n + 1) 7−→ R)(i).

∏
FSD ⊆

∏
FS(Seg(n + 1) 7−→ R). dom(f · I) =

I−1(I◦(
∏
FSD)). f · I is continuous on

∏
FSD. For every natural number

i such that i ∈ Seg n holds D1(i) is a subset of R.
∏
FSD1 is a subset of∏

FS(Seg n 7−→ R). Reconsider I1 =
∏
FSD1 as a subset of

∏
FS(Seg n 7−→

(the real normed space of R)). Reconsider f0 = f · I as a partial function
from

∏
FS(Seg n 7−→ (the real normed space of R)) × (the real normed

space of R) to the real normed space of R. dom f0 = I1 × D2. P3 is
continuous. P3 is integrable on L-Meas. �
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