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Summary. In this article, we prove the integrability of continuous func-
tions on m-dimensional real normed spaces, using the Mizar formalism. Gene-
ralizing selected theorems from the Mizar Mathematical Library, we prove the
integrability of continuous real n-variable functions and then, using the corre-
spondence between product-type and tuple-type spaces, we demonstrate the in-
tegrability of continuous functions on the desired multidimensional spaces.
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INTRODUCTION

This paper extends the formalization of measure theory in Mizar [15], [13],
[16] by developing foundational results for the integrability on continuous func-
tions on n-dimensional real normed spaces [2]. Related formalizations of this
area have also been carried out in Isabelle/HOL [14] and Coq [3]. The authors
have previously formalized several theorems on the integrability of continuous
functions of two and three real variables [9, [10], as well as the consistency betwe-
en two constructions of higher-dimensional spaces (less important from informal
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point of view [I]) — product-type and tuple-type — within simple real spaces [7];
this article is a natural continuation of [§], where this correspondence is further
explored [I7]. First, a partial strenghtening of theorems from previous articles
[6], [9], [8] is given (Sect. 1). These are mainly generalizations considering the
case of empty sets.

In Section 2, we prove the integrability of continuous real n-variable func-
tions. Although we are dealing with functions on n-dimensional real normed
spaces of the direct product type, the essence of the proof is, of course, the pro-
of of the integrability on n-dimensional real number spaces of the direct product
type. In Section 3, we prove the integrability of continuous functions on tuple-
type n-dimensional real normed spaces, based on the results of the previous
section. Finally, the results obtained in this article can be generalized slightly,
but since the Riemann integral is defined on a non-empty closed interval wi-
thin the Mizar Mathematical Library [11], many articles need to be modified
to achieve this goal; we can foresee a revision of the MML [12], which will in-
corporate some of our enhancements in order to have more general form of the
original theorems listed in Sect. 1.

1. PRELIMINARIES

Now we state the propositions:

(1) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. If dom f = 0,
then f is integrable on M.

(2) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. If dom f = 0,
then f is integrable on M. The theorem is a consequence of (1).

(3) GENERALIZED [6]:3:
Let us consider non zero natural numbers n, %, j, k, an n-element finite
sequence X, a j-element finite sequence X7, and a k-element finite se-
quence Xo. Suppose ¢ < j < k and X; = X[j and Xo = X[k. Then
(Irins X1) (i) = (Tpins X2)(4)-
PROOF: Define P[non zero natural number] =if $1 < j, then ([Tpi,g X1)($1)
= ([Tpins X2)($1). P[1]. For every non zero natural number m such that
P[m] holds P[m + 1]. For every non zero natural number m, P[m]. O

(4) GENERALIZED [6]:6:
Let us consider a non zero natural number n, an (n 4 1)-element finite

sequence D, and an n-element finite sequence D;. Suppose Dy = D[n.
Then [[pg D = [Ipg D1 x D(n+1).



INTEGRABILITY OF MULTIVARIABLE CONTINUOUS FUNCTIONS 187

PROOF: Define P[non zero natural number] = if $; < n, then ([T, D)($1)
= (ITping D1)($1). PI1]. For every non zero natural number k such that
P[k] holds P[k + 1]. For every non zero natural number k, P[k]. O

(5) GENERALIZED [9]:51:
Let us consider a subset I of R, a closed interval subset J of R, a partial
function f from (the real normed space of R) x (the real normed space of
R) to the real normed space of R, and a partial function g from R x R to
R. Suppose I x J = dom f and f is continuous on I x J and f = g. Then

(i) Integral2(L-Meas, |[R(g)|)[[ is a partial function from R to R, and
(i) Integral2(L-Meas,R(g))|[ is a partial function from R to R.

(6) MISSING CASE OF [§]:6:
Let us consider a non zero natural number n, and an n-element finite
sequence D. If D is not non-empty, then [[pg D = 0.
PRrOOF: Consider i being an object such that i € dom D and D(i) = 0.
Define P[non zero natural number] = if i < $1 < n, then ([Ipi,g D)($1) =
(). P[1]. For every non zero natural number k such that P[k] holds P[k+1].
For every non zero natural number k, P[k]. O

(7) GENERALIZED [§]:6:
Let us consider a non zero natural number n, an n-element finite sequence
X, and an object . Then =z € [[pg X if and only if there exists an n-
element finite sequence p; such that p; € [[ X and z = PtCarProd(p;).
The theorem is a consequence of (6).

(8) GENERALIZED [§]:39:
Let us consider a non zero natural number n, and an n-element finite sequ-
ence D. Suppose for every natural number ¢ such that i € Segn holds D(7)
is an element of L-Field. Then [[pg D is an element of [[pieq L-Field(n).
The theorem is a consequence of (6).

(9) GENERALIZED [8]:41:
Let us consider a non zero natural number n, and an n-element finite
sequence D. Suppose for every natural number ¢ such that ¢ € Segn holds
D(7) is an interval. Then [[pg D is an element of [[p;q L-Field(n). The
theorem is a consequence of (8).
(10) GENERALIZED [8]:48:
Let us consider a non zero natural number n, and n-element finite sequ-
ences X, Y. Suppose for every natural number ¢ such that ¢ € Segn holds
X (i) CY(i). Then [[pg X C JIpg Y. The theorem is a consequence of (6).
(11) GENERALIZED [8]:50:
Let us consider non zero natural numbers n, k, a non empty set X, and
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an n-element finite sequence D. Suppose & € Segn and for every na-
tural number ¢ such that ¢ € Segn holds D(i) is a subset of X. Then
(ITping D) (k) is a subset of [[pg(Segk — X).
PROOF: Define P[non zero natural number| =if §; € Segn, then ([[pi,g D)
($1) is a subset of [[pg(Seg$1 —— X). PJ[1]. For every non zero natural
number ¢ such that P[i] holds P[i + 1]. For every non zero natural number
k, Plk]. O

GENERALIZED [8]:71:
Let us consider a non zero natural number n, and an n-element finite
sequence D. Suppose for every natural number ¢ such that ¢ € Segn holds
D(i) C R. Then [[ D = (CarProd(Segn +—— R))°([Ipg D).
PROOF: Set I =CarProd(Seg n+— (the real normed space of R)). [Tpg D C
the carrier of [[pg(Segn —— (the real normed space of R)). For every
object z, x € [[ D iff x € I°(J[pg D). O

2. INTEGRABILITY OF CONTINUOUS REAL n-VARIABLE FUNCTIONS

Now we state the propositions:

(13)

(i) IIps(Segl —— (the real normed space of R)) = the real normed
space of R, and

(ii) ElmFin(Seg1 +— (the real normed space of R), 1) = the real normed
space of R, and

(iii) JIpg(Seg2 +—— (the real normed space of R)) = (the real normed
space of R) x (the real normed space of R), and

(iv) ElmFin(Seg2 —— (the real normed space of R), 2) = the real normed
space of R, and

(v) Tlpg(Seg3 —— (the real normed space of R)) = (the real normed
space of R) x (the real normed space of R) x (the real normed space
of R).

Let us consider a non zero natural number n, a partial function f
from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, a partial function g from
[Ips(Segn — R) x R to R, and an element p of [[pg(Segn —— R).
Suppose f is continuous on dom f and f = g. Then ProjPMapl(g,p) is
continuous.

PROOF: Set P; = ProjPMapl(g,p). For every real number yy such that
1o € dom P; holds P is continuous in gg. [J
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(15) Let us consider non empty sets X, Y, Z, a function T from X into Y,
a partial function f from X to Z, and a partial function g from Y to Z.
Suppose T is bijective and g = f - (T!). Then

(i) domg = T°dom f, and
(ii) domg = (°T)(dom f).

(16) Let us consider a non zero natural number n, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function g from [[pg(Segn —
R) x R to R, a partial function P5 from [[pg(Segn — (the real normed
space of R)) to the real normed space of R, and an element g of R. Suppose
f is continuous on dom f and f = g and P» = ProjPMap2(g, q). Then P,
is continuous on dom Ps.
PRrROOF: For every point zg of [[pg(Segn —— (the real normed space of
R)) such that zg € dom P, holds P» is continuous in xg. O

(17) Let us consider a non zero natural number n, a partial function g from
[Irs(Segn — R) x R to R, and an element ¢ of R. Then

(i) (ProjPMap2(g,q))- ((CarProd(Segn —— R))™1!) is a partial function
from R™ to R, and

(i) dom((ProjPMap2(g,q)) - ((CarProd(Segn — R))~1)) =
(CarProd(Segn — R))° dom(ProjPMap2(g, q)).

(18) Let us consider a non zero natural number n, a partial function f
from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, a partial function g from
[Irs(Segn — R) x R to R, and an element p of [Jpg(Segn —— R).
Suppose f is continuous on dom f and f = g. Then ProjPMapl(|g|,p) is
continuous. The theorem is a consequence of (14).

(19) Let us consider a non zero natural number n, a partial function f from

[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function ¢ from [[pg(Segn —
R) x R to R, a partial function P, from []rg(Segn — (the real normed
space of R)) to the real normed space of R, and an element ¢ of R. Suppose
f is continuous on dom f and f = g and P, = ProjPMap2(|g|,q). Then
P, is continuous on dom Ps.
PROOF: Reconsider P; = ProjPMap2(g,q) as a partial function from
[Irs(Segn —— (the real normed space of R)) to the real normed space
of R. P; is continuous on dom P;. For every point z¢ of [[pg(Segn —
(the real normed space of R)) such that g € dom P; holds P, is continuous
in xg. O

189
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(20) Let us consider a non zero natural number n, a partial function g from
[Irs(Segn — R) x R to R, and an element ¢ of R. Then

(i) (ProjPMap2(|gl,q))-((CarProd(Segn —— R))~1) is a partial function
from R™ to R, and

(ii) dom((ProjPMap2(|gl,q)) - ((CarProd(Segn — R))~1)) =
(CarProd(Segn — R))° dom(ProjPMap2(|g|, q))-

(21) Let us consider a non zero natural number n, a partial function f

from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, a partial function g from
[Irs(Segn — R) x R to R, and an element p of [[pg(Segn — R). Sup-
pose f is uniformly continuous on dom f and f = g. Then ProjPMapl(g, p)
is uniformly continuous.
PROOF: Set P; = ProjPMapl(g,p). For every real number r such that
0 < r there exists a real number s such that 0 < s and for every real
numbers y1, yo such that y;, y2 € dom P; and |y; — y2| < s holds | Py (y1) —
Pi(y2)| <r. O

(22) Let us consider a non zero natural number n, a partial function f from

[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function g from [[pg(Segn —
R) x R to R, a partial function P5 from [[pg(Segn — (the real normed
space of R)) to the real normed space of R, and an element s of R. Suppose
f is uniformly continuous on dom f and f = g and P, = ProjPMap2(g, s).
Then P; is uniformly continuous on dom Ps.
PROOF: For every real number r such that 0 < r there exists a real number
so such that 0 < sg and for every points z1, x2 of [Jpg(Segn —— (the real
normed space of R)) such that x;, z2 € dom P5 and ||z1 — x2|| < sp holds
HP2/1‘1 - PQ/mH <r. U

(23) Let us consider a non zero natural number n, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function g from [[pg(Segn —
R) x R to R, a partial function f from R to R, and an element z of
[Irs(Segn — R). Suppose f is continuous on dom f and f = ¢ and f=
ProjPMap1(R(g), z). Then f is continuous. The theorem is a consequence
of (14).

(24) Let us consider a non zero natural number n, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function g from [[pg(Segn —
R) x R to R, a partial function f from [[pg(Segn +—— (the real normed
space of R)) to the real normed space of R, and an element y of R. Suppose
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f is continuous on dom f and f = g and f = ProjPMap2(R(g),y). Then
f is continuous on dom f. The theorem is a consequence of (16).

(25) Let us consider a non zero natural number n, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function g from [[pg(Segn —
R) x R to R, a partial function f from R to R, and an element z of
[Irs(Segn — R). Suppose f is continuous on dom f and f = g and f=
ProjPMap1(|R(g)|, ). Then f is continuous. The theorem is a consequence
of (18).

(26) Let us consider a non zero natural number n, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function g from [[pg(Segn —
R) x R to R, a partial function f from [[pg(Segn +— (the real normed
space of R)) to the real normed space of R, and an element y of R. Suppose
f is continuous on dom f and f = g and f = ProjPMap2(|R(g)|,y). Then
f is continuous on dom f. The theorem is a consequence of (19).

Let us consider a non zero natural number n, a subset I of [[pg(Segn — R),
a non empty, closed interval subset J of R, an element = of [[pg(Segn —
R), a partial function f from [[pg(Segn —— (the real normed space of R)) x
(the real normed space of R) to the real normed space of R, a partial function
g from [[pg(Segn — R) x R to R, and a partial function f from R to R. Now
we state the propositions:

(27) Suppose z € I and dom f = I x J and f is continuous on I x J and

f =g and f = ProjPMap1(R(g), ). Then

(i) fIJ is bounded, and

(ii) f is integrable on J.
The theorem is a consequence of (14).

(28) Suppose z € I and dom f = I x J and f is continuous on I x J and
f=gand f = ProjPMapl(|R(g)|,x). Then

(i) fIJ is bounded, and

A~

(ii) f is integrable on J.
The theorem is a consequence of (25).

(29) Let us consider a non zero natural number n, a subset I of [[pg(Segn —
R), a closed interval subset J of R, an element x of [[pg(Segn — R),
a partial function f from [[pg(Segn —— (the real normed space of R)) x
(the real normed space of R) to the real normed space of R, a partial
function ¢ from [[pg(Segn — R) x R to R, and a partial function f from
R to R. Suppose dom f = I x J and f is continuous on I x J and f = g and

191
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f = ProjPMap1(R(g), ). Then f is integrable on L-Meas. The theorem
is a consequence of (27) and (1).

(30) Let us consider a non zero natural number n, a subset I of [[yq(Segn —
R), a non empty, closed interval subset J of R,anelement zof] [pq(Seg n+—
R), a partial function f from [[pg(Segn —— (the real normed space of
R)) x (the real normed space of R) to the real normed space of R, a partial
function ¢ from [[pg(Segn — R) x R to R, and a partial function f from
R to R. Suppose = € I and dom f = I x J and f is continuous on I x J
and f = g and f = ProjPMap1(R(g), x). Then

(i) [ f(z)dz = [ fdL-Meas, and
[ e |
(i) [ f(z)dz = / ProjPMapl(R(g), z) d L-Meas, and

(iii) [ f(z)dz = (Integral2(L-Meas, R(g)))(x).

S S—

The theorem is a consequence of (27).

(31) Let us consider a non zero natural number n, a subset I of [[pq(Segn —
R), a closed interval subset J of R, an element x of [[pg(Segn — R),
a partial function f from [[pg(Segn —— (the real normed space of R)) x
(the real normed space of R) to the real normed space of R, a partial
function ¢ from [[pg(Segn — R) xR to R, and a partial function f from
R to R. Suppose dom f = I x J and f is continuous on I x J and f = g and
f = ProjPMap1(|R(g)|, ). Then f is integrable on L-Meas. The theorem
is a consequence of (25) and (1).

(32) Let us consider a non zero natural number n, a subset I of [[pg(Segn —
R), a non empty, closed interval subset J of R,anelement zof[pg(Segn—
R), a partial function f from []pg(Segn —— (the real normed space of
R)) x (the real normed space of R) to the real normed space of R, a partial
function ¢ from [[pg(Segn — R) x R to R, and a partial function f from
R to R. Suppose = € I and dom f = I x J and f is continuous on I x J
and f =g and f = ProjPMap1(|R(g)|, ). Then

(1) /f(ac)d:c:/de—Meas, and
(i) [ f(z)dx = /ProjPMapl(]K(g)],x) d L-Meas, and

(iii) [ f(z)dz = (Integral2(L-Meas, [R(g)|))(z).

%\ %\k
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The theorem is a consequence of (28).

(33) Let us consider a non zero natural number n, a subset I of [Jpg(Segn —
R), a subset J of R, a partial function f from [[pg(Segn — (the real
normed space of R)) x (the real normed space of R) to the real normed
space of R, a partial function g from []pg(Segn —— R) x R to R, and
an element E of o(MeasRect (] [pieq L-Field(n), L-Field)). Suppose I x J =
dom f and f is continuous on I x J and f =g and £ =1 x J. Then g is
E-measurable.

PROOF: For every real number r, ENLE-dom(g, ) € o(MeasRect(]]pieq L-
Field(n), L-Field)). O

(34) Let us consider a non zero natural number n, a subset I of [[yq(Segn —
R), a closed interval subset J of R, a partial function f from [[pg(Segn —
(the real normed space of R)) x (the real normed space of R) to the real
normed space of R, and a partial function g from [[pg(Segn — R) x R
to R. Suppose I x J = dom f and f is continuous on I x J and f = g.
Then

(i) Integral2(L-Meas, |R(g)|) is a partial function from [[pg(Segn — R)
to R, and

(ii) Integral2(L-Meas, R(g)) is a partial function from [[pg(Segn — R)
to R.

The theorem is a consequence of (32) and (30).

(35) Let us consider a non zero natural number n, an n-element finite sequence
D, a closed interval subset J of R, and a subset E of [[pg(Segn —
(the real normed space of R)) x (the real normed space of R). Suppose for
every natural number i such that i € Segn holds D(i) is a closed interval
subset of R and £ = [[pg D X% J. Then E is compact. The theorem is
a consequence of (6).

(36) Let us consider a non zero natural number n, a set E, a partial function
f from []pg(Segn — (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, and a partial function g from
[Irs(Segn — R) x R to R. Suppose f =g and E C dom f.

Then f is uniformly continuous on E if and only if for every real
number e such that 0 < e there exists a real number r such that 0 < r
and for every points x1, x2 of [[pg(Segn — (the real normed space of
R)) and for every real numbers y1, yo such that (x1, y1), (x2, y2) € E and
[#2 — 21]] <7 and [y2 — y1| <7 holds [g({z2, y2)) — g({z1, 1)) <e.
PROOF: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every points z;, 22 of [[pg(Segn —— (the real
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normed space of R)) x (the real normed space of R) such that zq, 290 € E
and |lz1 — z2|| <7 holds || f/., — f/z,| <e. O

(37) Let us consider a non zero natural number n, an n-element finite sequence
D, a closed interval subset J of R, a partial function f from []pg(Segn —
(the real normed space of R)) x (the real normed space of R) to the real
normed space of R, and a partial function g from [[pg(Segn — R) x R
to R.

Suppose for every natural number i such that i € Segn holds D(i) is

a closed interval subset of R and f = g and f is continuous on [[pg D X J.
Let us consider a real number e. Suppose 0 < e. Then there exists a real
number 7 such that

(i) 0 < r, and

(ii) for every points xj, z2 of [[gg(Segn —— (the real normed space
of R)) and for every real numbers yi, yo such that (zi, y1), (2,
y2) € [Ipg D x J and ||zg — z1]| < r and |y — y1| < r holds |g({x2,

y2)) — 9({z1, y1))| <e.

PROOF: [[g D is a subset of [Jpg(Segn — R). There exists a subset I of
[Irs(Segn — (the real normed space of R)) such that I = [[pg D and I
is compact. Consider I being a subset of [[yg(Segn —— (the real normed

space of R)) such that I = [[pg D and I is compact. Reconsider J; = J
as a subset of the real normed space of R. Reconsider E' = [[pg D X Jp
as a subset of [[pg(Segn — (the real normed space of R)) x (the real

normed space of R). E is compact. O

(38) Let us consider a set X, a real normed space S, a partial function f from
S to the real normed space of R, and a partial function g from X to R. If

f =g, then |[f] = g.

(39) Let us consider a non zero natural number n, an n-element finite sequence
D, a closed interval subset J of R, a partial function f from [[pg(Segn —
(the real normed space of R)) x (the real normed space of R) to the real
normed space of R, and a partial function g from [Jpg(Segn — R) x R
to R.

Suppose for every natural number 7 such that i € Segn holds D(i) is
a closed interval subset of R and f is continuous on [[pg D X J and f = g.
Let us consider a real number e. Suppose 0 < e. Then there exists a real
number r such that

(i) 0 <7, and

(ii) for every points xj, x2 of [[pg(Segn —— (the real normed space
of R)) and for every real numbers yi, yo such that (z1, y1), (o,
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y2) € [Igg D x J and ||xzg — z1|| < r and |y2 — y1| < r holds ||g|({x2,
y2)) — lgl({z1, y1))| <e.

The theorem is a consequence of (38) and (37).

Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of [[pg(Segn —— (the real normed space of R)), a closed interval
subset J of R, a partial function f from [[pg(Segn — (the real normed space
of R)) x (the real normed space of R) to the real normed space of R, a partial
function ¢ from [[pg(Segn — R) x R to R, and a partial function Go from
[Irs(Segn —— (the real normed space of R)) to the real normed space of R.
Now we state the propositions:

(40) Suppose for every natural number i such that ¢ € Segn holds D(i) is

a closed interval subset of R and I = [[pg D and I x J = dom f and f
is continuous on I x J and f = g and Gy = Integral2(L-Meas, [R(g)|)|I.
Then G5 is continuous on 1.
PROOF: Consider ¢, d being real numbers such that J = [¢,d]. Set Ry =
R(g). For every element x of [[pg(Segn — R) and for every element y of
R such that € I and y € J holds (ProjPMapl(|Ry|,z))(y) = |Rol(x,y)
and |Ro|(z,y) = l9({z, y))| and |Ro|(z,y) = |g]({z, ).

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements z1, z2 of [[pg(Segn — R) and
for every points x4, x5 of [[pg(Segn —— (the real normed space of R))
such that 4 = x; and x5 = 29 and ||x5 — 24| < r and z1, 9 € I for
every element y of R such that y € J holds |(ProjPMapl(|Ro|, z2))(y) —
(ProjPMapl(|Rol,z1))(y)| < e. [Ipg D is a subset of [[pg(Segn — R). O

(41) Suppose for every natural number i such that i € Segn holds D(7) is

a closed interval subset of R and I = [[pg D and I x J = dom f and f is
continuous on I x J and f = g and G = Integral2(L-Meas, R(g))[I. Then
G+ is continuous on 1.
PRrooOF: Consider ¢, d being real numbers such that J = [¢,d]. For every
real number e such that 0 < e there exists a real number r such that 0 < r
and for every points x;, z2 of [[pg(Segn — (the real normed space of
R)) such that |z2 — z1|| < r and z1, x2 € I for every real number y such
that y € J holds |g({z2, y)) — g({z1, y))| < e. Set Ry = R(g).

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements z1, z2 of [[pg(Segn — R) and
for every points x4, x5 of [[pg(Segn —— (the real normed space of R))
such that x4 = x; and x5 = 29 and ||x5 — 24| < r and z1, x9 € I for
every element y of R such that y € J holds |(ProjPMapl(Ry, z2))(y) —
(ProjPMapl(Ro,x1))(y)| < e. [Igpg D is a subset of [[pg(Segn — R). O
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(42) Let us consider a non zero natural number n, an n-element finite sequence
D, a partial function ¢ from [Jpg(Segn — (the real normed space of R))
to the real normed space of R, and a partial function f from [[pg(Segn —
R) to R.

Suppose f = g and g is continuous on [[pg D and [[pg D C domg
and for every natural number ¢ such that i € Segn holds D(7) is a closed
interval subset of R. Let us consider a real number e. Suppose 0 < e. Then
there exists a real number r such that

(i) 0 < r, and

(ii) for every m-element finite sequences x, y of elements of R such that
PtCarProd(z), PtCarProd(y) € [[pg D and for every natural number
7 such that ¢ € dom D there exist real numbers x3, y3 such that
x3 = x(i) and y3 = y(i) and |z3 — y3| < r holds | f(PtCarProd(z)) —
f(PtCarProd(y))| < e.

PROOF: Set S = Segn —— (the real normed space of R). [Tpg D is a subset
of [[pg(Segn — R). There exists a subset I of [Jpg(Segn — (the real
normed space of R)) such that I = [[pg D and I is compact. Consider E
being a subset of [ [pg S such that ' = [[pg D and E is compact. Consider
ro being a real number such that 0 < ¢ and for every points z1, 22 of [ [pg S
such that z1, z2 € F and ||z1 —22|| < 7o holds ||g/., — g/, <e.Setr; = 3.
Set r = "L. Reconsider z; = PtCarProd(z), 22 = PtCarProd(y) as a point
of [[pg S. Reconsider m = n — 1 as a natural number.

Consider ps being an (m+1)-element finite sequence such that z;—z9 =
PtCarProd(ps). Consider n; being an element of R™*! such that for every
non zero natural number i such that ¢ < m + 1 there exists a point p3 of
ElmFin(S,4) such that ps = pa2(i) and n1(i) = ||p3|| and ||z1 — 22| = |n1]-
For every natural number ¢ such that i € domny holds 0 < ny(z) < r. O

(43) Let us consider a non zero natural number n, an n-element finite sequence
D, a partial function f from [[pg(Segn +—— (the real normed space of R))
to the real normed space of R, and a partial function ¢ from [[pg(Segn —
R) to R. Suppose f = g and for every natural number i such that ¢ € Segn
holds D(i) is a closed interval subset of R and f is continuous on [[pg D
and dom f = [[pg D. Then g is integrable on Measurep,oq(L-Meas(n)).
PROOF: Define P[non zero natural number| = for every $;-element finite
sequence D for every partial function f from [[pg(Seg$; —— (the real
normed space of R)) to the real normed space of R for every partial func-
tion ¢ from [[pg(Seg$1 — R) to R such that f = g and for every natural
number 4 such that ¢ € Seg$; holds D(i) is a closed interval subset of R
and f is continuous on [[pg D and dom f = [[pg D holds ¢ is integrable
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on Measurep,oq(L-Meas($1)).

P[1] by (13), [T, (37)], [4, (72), (75)]. For every non zero natural number
n such that P[n] holds P[n + 1] by [8, (38)], (9), (42), [8, (66)]. For every
non zero natural number n, P[n]. O

(44) Let us consider a non zero natural number n, an n-element finite se-
quence D, a subset J of R, an element y of R, a partial function f
from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, and a partial function g from
[Irs(Segn — R) x R to R. Suppose for every natural number i such
that i € Segn holds D(i) is a closed interval subset of R and y € J and
dom f = [[pg D x J and f is continuous on [[pg D x J and f = g. Then

(i) dom(ProjPMap2(R(g),v)) = [Ips D, and

(ii) ProjPMap2(R(g),y) is integrable on Measurep,.q(L-Meas(n)).
The theorem is a consequence of (11), (24), and (43).

(45) Let us consider a non zero natural number n, an n-element finite sequ-
ence D, a subset J of R, an element y of R, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function ¢ from [[pg(Segn —
R) x R to R, and a partial function f from [[pg(Segn — R) to R. Sup-
pose for every natural number i such that i € Segn holds D(i) is a closed
interval subset of R and y € J and dom f = [[pg D x J and f is continuous
on [[pg D x J and f = g and f = ProjPMap2(R(g),y). Then

(i) f is integrable on Measurepq(L-Meas(n)), and

(ii) [ProjPMap2(R(g),y)d Measurep,oq(L-Meas(n)) =
(Integrall(Measurep;oq(L-Meas(n)), R(g)))(y).

The theorem is a consequence of (44).

(46) Let us consider a non zero natural number n, an n-element finite se-
quence D, a subset J of R, an element y of R, a partial function f
from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, and a partial function g from
[Ips(Segn — R) x R to R. Suppose for every natural number i such
that i € Segn holds D(i) is a closed interval subset of R and y € J and
dom f = [[pg D x J and f is continuous on [[pg D x J and f = g. Then

(i) dom(ProjPMap2([R(g)|,1)) = [lps D, and
(ii) ProjPMap2(|R(g)|,y) is integrable on Measurep,oq(L-Meas(n)).
The theorem is a consequence of (11), (26), and (43).
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(47) Let us consider a non zero natural number n, an n-element finite se-
quence D, a subset J of R, an element y of R, a partial function f
from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R, a partial function g from
[Irs(Segn — R) x R to R, and an element E of []g;qq L-Field(n). Sup-
pose for every natural number i such that i € Segn holds D(i) is a closed
interval subset of R and y € J and dom f = [[pg D x J and f is continuous
on [[pg D x J and f = g and E = [[pg D. Then ProjPMap2(|R(g)|,v) is
E-measurable. The theorem is a consequence of (46).

(48) Let us consider a non zero natural number n, an n-element finite sequ-
ence D, a subset J of R, an element y of R, a partial function f from
[Irs(Segn — (the real normed space of R)) x (the real normed space of
R) to the real normed space of R, a partial function ¢ from [[pg(Segn —
R) x R to R, and a partial function f from [[pg(Segn —— R) to R. Sup-
pose for every natural number i such that i € Segn holds D(i) is a closed
interval subset of R and y € J and dom f = [[pg D x J and f is continuous
on [[ps D x J and f = g and f = ProjPMap2(|R(g)|,y). Then

(i) f is integrable on Measurep;.q(L-Meas(n)), and
(ii) [ ProjPMap2(|R(g)|,y) d Measurep,oq(L-Meas(n)) =
(Integrall(Measurep,oq(L-Meas(n)), |R(g)|))(y).

The theorem is a consequence of (46).

(49) Let us consider a non zero natural number n, an n-element finite sequ-
ence D, a subset I of [[pg(Segn — (the real normed space of R)), and
an interval J. Suppose for every natural number ¢ such that ¢ € Segn
holds D(i) is an interval and I = [[pg D. Then

(i) I x J is a subset of [Jpg(Segn —— (the real normed space of R)) x
(the real normed space of R), and

(ii) I x J € o(MeasRect(][]pjeq L-Field(n), L-Field)).
The theorem is a consequence of (9).

(50) Let us consider a non zero natural number n, an n-element finite sequence
D, a subset J of R, a partial function f from [Jpg(Segn —— (the real
normed space of R)) x (the real normed space of R) to the real normed
space of R, and a partial function g from [[pg(Segn — R) x R to R.
Suppose for every natural number i such that ¢ € Segn holds D(i) is
a closed interval subset of R and [[pg D X J = dom f and f is continuous
on [[pgD x J and f = g. Then

(i) Integrall(Measurep,oq(L-Meas(n)), |R(g)|)[/ is a partial function from
R to R, and
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(ii) Integrall(Measurep,oq(L-Meas(n)),R(g))].J is a partial function from
R to R.

The theorem is a consequence of (48) and (45).

(51) Let us consider a non zero natural number n, an element Eq of [Jpiaq L-
Field(n), and an element Es of L-Field. Then

(i) E1 x By € o(MeasRect(][pjeq L-Field(n), L-Field)), and
(ii) (Measurepyoq(L-Meas(n+1)))(E1 x E) = (Measurep,oq(L-Meas(n)))
(E1) - (L-Meas)(Es).

(52) Let us consider a non zero natural number n, and an n-element finite

sequence D. Suppose for every natural number 7 such that ¢ € Segn holds
D(i) is a closed interval subset of R. Then there exists a real number r
and there exists an element E of [[g;q L-Field(n) such that E = [[pg D
and (Measurepyoq(L-Meas(n)))(E) =r and 0 < .
PROOF: Define P[non zero natural number| = for every $;-element finite
sequence D such that for every natural number ¢ such that i € Seg$;
holds D(i) is a closed interval subset of R there exists a real number r
and there exists an element E of [[pjeq L-Field($1) such that E = [[pg D
and (Measurepyoq(L-Meas($1)))(E) = r and 0 < r. P[1] by [7, (41)], [5}
(5)], [7, (45)]. For every non zero natural number n such that P[n] holds
P[n + 1]. For every non zero natural number n, P[n]. O

Let us consider a non zero natural number n, an n-element finite sequence D,
a closed interval subset J of R, a partial function f from [[pg(Segn —— (the real
normed space of R)) x (the real normed space of R) to the real normed space of
R, a partial function g from []pg(Segn — R) X R to R, and a partial function
G from R to R. Now we state the propositions:

(53) Suppose for every natural number i such that ¢ € Segn holds D(7) is
a closed interval subset of R and [[pg D X J = dom f and f is continuous
onJ[pgD x Jand f =g and G; =
Integrall(Measurep,oq(L-Meas(n)), |R(g)|)[J. Then G is continuous.
PROOF: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every real numbers y1, y2 such that |yo —yi| < r
and y1, y2 € J for every point z of [[pg(Segn — (the real normed space
of R)) such that x € [[pg D holds ||g|({z, y2)) — |g|({z, y1))| < e. Set
Ry = R(g). For every element x of [[pg(Segn —— R) and for every element
y of R such that z € [[pg D and y € J holds (ProjPMap2(|Ro|,y))(x) =
[Rol(z,y) and |Rol(z, ) = lg({e, )] and [Rol(z,) = lg|((z, 9));

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements y1, y2 of R such that |yo — y1| <7
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and y1, y2 € J for every element x of [[pg(Segn —— R) such that = €
[Irs D holds |(ProjPMap2(|Rol|, y2))(x) — (ProjPMap2(|Ro|, y1))(z)| < e.
For every real numbers yg, r such that yg € J and 0 < r there exists a real
number s such that 0 < s and for every real number y; such that y; € J
and |y1 — yo| < s holds |G1(y1) — G1(yo)| < r. O

Suppose for every natural number i such that i € Segn holds D(i) is
a closed interval subset of R and [[pg D xJ = dom f and f is continuous on
[Ips DxJ and f = g and G; = Integrall(Measurep,oq(L-Meas(n)),R(g))[J.
Then G is continuous.
PROOF: Set I = [[pg D. For every real number e such that 0 < e there
exists a real number r such that 0 < r and for every real numbers yi, y2
such that |y2 — y1| <7 and y1, y2 € J for every point x of [[pg(Segn —
(the real normed space of R)) such that x € I holds |g({z, y2)) — g((z,
y1))| < e. Set Ry = R(g).

For every real number e such that 0 < e there exists a real number r
such that 0 < r and for every elements yi, y2 of R such that |yo —yi| < r
and y1, y2 € J for every element x of [[pg(Segn — R) such that z € I
holds |(ProjPMap2(Ry,y2))(x) — (ProjPMap2(Ro,y1))(x)| < e. For every
real numbers yg, r such that yg € J and 0 < r there exists a real number
s such that 0 < s and for every real number y; such that y; € J and
ly1 — yo| < s holds |G1(y1) — Gi(yo)| < r. O

Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of [[pg(Segn —— (the real normed space of R)), a closed
interval subset J of R, a partial function f from [[pg(Segn —— (the real
normed space of R)) x (the real normed space of R) to the real normed
space of R, and a partial function g from [[pg(Segn — R) x R to R.
Suppose for every natural number i such that ¢ € Segn holds D(i) is
a closed interval subset of R and I = [[pg D and I x J = dom f and f is
continuous on I x J and f = ¢g. Then

(i) g is integrable on ProdMeas(Measurep;,q(L-Meas(n)), L-Meas), and
ii) for every element x of [[pg(Segn — R),
FS
(Integral2(L-Meas, |R(9)|))(z) < +o00, and
iii) for every element y of R,
(iii)
(Integrall(Measurep,oq(L-Meas(n)), |R(g)]))(y) < +oo, and

(iv) for every element U of [[pjeq L-Field(n), Integral2(L-Meas, R(g)) is
U-measurable, and

(v) for every element V of L-Field,
Integrall(Measurep,oq(L-Meas(n)), R(g)) is V-measurable, and
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(vi) Integral2(L-Meas,R(g)) is integrable on Measurep,oq(L-Meas(n)), and
(vii) Integrall(Measurep,oq(L-Meas(n)), R(g)) is integrable on L-Meas, and

(viii) [ g d ProdMeas(Measurep,oq(L-Meas(n)), L-Meas) =
[ Integral2(L-Meas, R(g)) d Measurep,oq (L-Meas(n)), and

(ix) [ gdProdMeas(Measurep;oq(L-Meas(n)), L-Meas) =
[ Integrall(Measurep,oq(L-Meas(n)), R(g)) d L-Meas.

(56) Let us consider a non zero natural number n, an (n + 1)-element fini-
te sequence D, a partial function f from []pg(Seg(n + 1) —— (the real
normed space of R)) to the real normed space of R, a partial function
g from [[pg(Seg(n + 1) — R) to R, and a partial function gy from
[Irs(Segn — R) x R to R. Suppose f = g and go = ¢ and for every
natural number i such that i € Seg(n + 1) holds D(7) is a closed interval
subset of R and f is continuous on [[rg D and dom f = [[pg D. Then

(i) Integral2(L-Meas, R(gp)) is integrable on Measurepq(L-Meas(n)),
and

(ii) [ gdMeasurep,oq(L-Meas(n + 1)) =
J g0 d ProdMeas(Measurep,oq(L-Meas(n)), L-Meas).

PROOF: Reconsider D3 = D[n as an n-element finite sequence. For every
natural number 7 such that ¢ € Segn holds D3(7) is a closed interval subset
of R. [[pg D3 is a subset of [[pg(Segn —— R). Reconsider Dy = [[pg D3
as a subset of [[pg(Segn — (the real normed space of R)). Reconsider
Dy = D(n+1) as a closed interval subset of R. [[pg D = Dy x Dy. O

(57) Let us consider a non zero natural number n, an n-element finite sequence
D, a subset I of [[pg(Segn —— (the real normed space of R)), a closed
interval subset J of R, a partial function f from [[pg(Segn —— (the real
normed space of R)) x (the real normed space of R) to the real normed
space of R, a partial function g from [[pg(Segn —— R) x R to R, and
a partial function G2 from [[pg(Segn — R) to R.

Suppose for every natural number i such that i € Segn holds D(i) is
a closed interval subset of R and I = [[pgq D and I x J = dom f and f is
continuous on I x J and f = g and G2 = Integral2(L-Meas, R(9))| [Ipg D-
Then [R(g)dProdMeas(Measurepyoq(L-Meas(n)), L-Meas) =
J G2 d Measurepyoq(L-Meas(n)).
PROOF: Set Ry = R(g). Set Ry = Integral2(L-Meas, Ry). Reconsider
Iy = [Ipg D as a subset of [[pg(Segn — R). Set N1 = ([[pg(Segn —
R)) \ Io. Reconsider Fy = Ro[ly, F1 = Ra[N; as a partial function from
[Tps(Segn —— R) to R. Iy is an element of [[p;q L-Field(n). For every
element x of [[pg(Segn —— R) such that z € dom F} holds Fi(x) = 0. O
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(58) Let us consider a non zero natural number n, an n-element finite sequence
D, asubset I of [[pg(Segn — (the real normed space of R)), a non empty,
closed interval subset J of R, a partial function f from [[pg(Segn —
(the real normed space of R)) x (the real normed space of R) to the real
normed space of R, a partial function g from [[rg(Segn — R) x R to R,
and a partial function G7 from R to R.

Suppose for every natural number i such that i € Segn holds D(7) is
a closed interval subset of R and I = [[pg D and I x J = dom f and f is
continuous on I x J and f =g and G =Integrall(Measurep,oq(L-Meas(n)),
R(g))[J. Then [ R(g)dProdMeas(Measurep,oq(L-Meas(n)), L-Meas) =

/Gl (x)dz.

J J—

PROOF: Set Ry = R(g). Set Ny = R\ J. Set Ry = Integrall(Measurep,oq(L-
Meas(n)), Ry). Reconsider Fy = R1[J, F1 = R1|Ns as a partial function
from R to R. G1]J is bounded and G| is integrable on J. [[pg D is a subset
of [Trpg(Seg n — R). For every element y of R such that y € dom F; holds

3. INTEGRABILITY OF CONTINUOUS FUNCTIONS ON n-DIMENSIONAL REAL
NORMED SPACES

Now we state the propositions:

(59) Let us consider a non zero natural number n, and a partial function
f from [[(Segn —— (the real normed space of R)) to the real normed
space of R. Then f - (CarProd(Segn —— (the real normed space of R)))
is a partial function from []pg(Segn — (the real normed space of R)) to
the real normed space of R.

(60) Let us consider a non zero natural number n, an n-element finite sequence
D, and a partial function f from [[(Segn —— (the real normed space of
R)) to the real normed space of R. Suppose for every natural number i
such that ¢ € Segn holds D(i) is a subset of R and f is continuous on
dom f and dom f = [[ D. Then f - (CarProd(Segn —— (the real normed
space of R))) is continuous on [[pg D.

PROOF: Set I = CarProd(Segn —— (the real normed space of R)). Con-
sider C' being a non-empty, n-element finite sequence such that C =
Segn — «a and [[pg C = the carrier of [[pg(Segn —— (the real normed
space of R)) and I = CarProd(C) and I is bijective, where « is the re-
al normed space of R. Reconsider F' = f - I as a partial function from
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[Irs(Segn — (the real normed space of R)) to the real normed space of
R. [Ipg D is a subset of [[pg(Segn —— R).

For every object x, x € [[ D iff © € I°([[pg D). For every point xq of
[Irs(Segn — (the real normed space of R)) and for every real number r
such that z¢ € [[pg D and 0 < r there exists a real number s such that
0 < s and for every point z; of [[pg(Segn —— (the real normed space of
R)) such that z1 € [[pg D and [[z1 — zol| < s holds [|[F/,, — Fjyll < 7. O

(61) Let us consider a non zero natural number n. Then
(i) (€™ || - |I) = I1(Segn — (the real normed space of R)), and
(ii) R™ = the carrier of [[(Segn — (the real normed space of R)), and
(iii) R™ =[I(Segn — R).

(62) Let us consider a non zero natural number n, an n-element finite sequence
D, and a partial function f from (€™, || - ||) to the real normed space of
R. Suppose for every natural number i such that i € Segn holds D(i)
is a subset of R and f is continuous on dom f and dom f = [[ D. Then
f - (CarProd(Segn —— (the real normed space of R))) is continuous on
[Irg D. The theorem is a consequence of (61) and (60).

(63) Let us consider a non zero natural number n, an n-element finite se-
quence D, a partial function f from (", - ||) to the real normed space
of R, a partial function ¢ from R" to R, and a partial function G from
[Ips(Segn — R) to R. Suppose for every natural number ¢ such that
i € Segn holds D(i) is a closed interval subset of R and f is continuous on
[[D and dom f =[[D and g = f and G = f - (CarProd(Segn — R)).
Then

(i) G is integrable on Measurep,.q(L-Meas(n)), and
(ii) g is integrable on XL-Meas(n), and
(ii) [ gdXL-Meas(n) = | G d Measurepyoq(L-Meas(n)).

PRrROOF: Set I = CarProd(Segn —— (the real normed space of R)). Con-
sider C' being a non-empty, n-element finite sequence such that C =
Segn — « and [[pg C = the carrier of [[pg(Segn —— (the real normed
space of R)) and I = CarProd(C) and I is bijective, where « is the real
normed space of R. (€™, || - ||) = [1(Segn —— (the real normed space of
R)). The carrier of (€™,| - |) = R™. Reconsider F' = f - I as a partial
function from []pg(Segn —— (the real normed space of R)) to the real
normed space of R. F' is continuous on [[pg D. For every natural num-
ber ¢ such that ¢ € Segn holds D(i) C R. [[pg D C [lpg(Segn — R).

[1D=I(Ilps D). O
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(64) Let us consider a non zero natural number n, an (n + 1)-element finite
sequence D, a partial function f from (£"*1 || - ||) to the real normed
space of R, a partial function G from []pg(Seg(n + 1) — R) to R, and
a partial function go from [[rg(Segn —— R) x R to R. Suppose for every
natural number ¢ such that i € Seg(n + 1) holds D(7) is a closed interval
subset of R and f is continuous on [[D and dom f = [[D and G =
f - (CarProd(Seg(n + 1) — R)) and gy = G. Then

(i) for every element = of [[pg(Segn — R),
(Integral2(L-Meas, |R(go)|))(z) < 400, and

(ii) for every element = of [[pg(Segn — R), ProjPMapl(R(go),z) is
integrable on L-Meas, and

(iii) for every element U of [[piqq L-Field(n), Integral2(L-Meas, R(go)) is
U-measurable, and

(iv) Integral2(L-Meas, R(gg)) is integrable on Measurepoq(L-Meas(n)),
and

(v) | G dMeasurepyoq(L-Meas(n + 1)) =
[ Integral2(L-Meas, R(gg)) d Measurep,oq (L-Meas(n)).

PRrROOF: Set I = CarProd(Seg(n + 1) —— (the real normed space of
R)). For every natural number i such that i € Seg(n + 1) holds D(i) C
R. For every natural number ¢ such that ¢ € Seg(n + 1) holds D(i) C
(Seg(n + 1) —— R)(7). IIpg D C Tlpg(Seg(n + 1) — R). Reconsider
D1 = Dn as an n-element finite sequence. For every natural number 4
such that i € Segn holds D; (i) C (Segn — R)(7). [[pg D1 is a subset of
[Irs(Segn — R). Reconsider I} = [[pg D1 as a subset of [[pg(Segn —
(the real normed space of R)).

Reconsider J; = D(n + 1) as a closed interval subset of R. Reconsider
fo = f -1 as a partial function from [Jpg(Segn —— (the real normed
space of R)) x (the real normed space of R) to the real normed space of R.
f - I is continuous on [[pg D. [Ipg D = [Ips D1 x D(n+1). dom(f - I) =
I7Y(I°([Tgg D)). dom fq = I; x Jy. For every natural number i such that
i € Segn holds Dq(i) is a closed interval subset of R. For every element
z of [[pg(Segn — R), ProjPMapl(R(go), ) is integrable on L-Meas.
| G dMeasurep,oq(L-Meas(n + 1)) =
| go d ProdMeas(Measurep,oq(L-Meas(n)), L-Meas). [J

(65) Let us consider a non zero natural number n, an (n + 1)-element finite
sequence D, an n-element finite sequence D7, a partial function f from
(E™L || - |) to the real normed space of R, a partial function G from
[Irs(Seg(n + 1) — R) to R, a partial function gg from [Jpq(Segn —
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R) x R to R, a non empty, closed interval subset Dy of R, an element x
of [Ipg(Segn —— R), and a partial function Ps from R to R. Suppose
Dy = DIn and for every natural number i such that ¢ € Seg(n + 1) holds
D(i) is a subset of R and f is continuous on [[ D and dom f = [[ D and
G = f - (CarProd(Seg(n+1) — R)) and go = G and Dy = D(n+ 1) and
x € [[pg D1 and P3 = ProjPMap1(|R(go)|, ). Then

(i) dom(ProjPMapl1(|R(go)|,x)) = D(n + 1), and

(ii) P3[Ds is continuous and bounded, and
(iii) P is integrable on Ds, and
(iv) ProjPMapl(|R(go)|,z) is integrable on L-Meas, and

)

(v) [ProjPMapl(|R(go)|, ) dL-Meas = /P3 )dx, and

(vi) (Integral2(L-Meas, [R(go)|))(x) = / Py(x)dz

PRrROOF: Set I = CarProd(Seg(n + 1) +—— (the real normed space of
R)). For every natural number i such that ¢ € Seg(n + 1) holds D(i) C
R. For every natural number ¢ such that ¢ € Seg(n + 1) holds D(i) C
(Seg(n + 1) — R)(i). Tlps D C lps(Seg(n + 1) — R). dom(f - I) =

“L(I°([Tgs D)). f - I is continuous on [[pg D. For every natural number
i such that ¢ € Segmn holds D (i) is a subset of R. []pg D1 is a subset of
[Irs(Segn — R). Reconsider I} = [[pg D1 as a subset of [[pg(Segn —
(the real normed space of R)). Reconsider fy = f - I as a partial function
from [[pg(Segn —— (the real normed space of R)) x (the real normed
space of R) to the real normed space of R. dom fy = I x Dy. P3 is
continuous. P is integrable on L-Meas. [J
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