Have a personal or library account? Click to login
Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations Cover

Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

Open Access
|Dec 2009

References

  1. Yamakoshi K, Togawa T, Ito H. Evaluation of the theory of cardiac-output computation from transthoracic impedance plethysmogram. Med Biol Eng Comput 1977;15:479–88.10.1007/BF02442275199803
  2. Bernstein DP. Pressure pulse contour-derived stroke volume and cardiac output in the morbidly obese patient. Obes Surg 2008;18:1015–21.1844389210.1007/s11695-007-9378-6
  3. Quick CM, Berger DS, Noordergraaf A. Apparent arterial compliance. Am J. Physiol (Heart Circ Physiol 43) 1998;274:H1393–1403.10.1152/ajpheart.1998.274.4.H1393
  4. Fogliardo R, Di Donfrancesco M, Burattini R. Comparison of linear and nonlinear formulations of the three-element winkdessel model. Am J Physiol (Heart Circ Physiol 40) 1996;271:H2661–68.10.1152/ajpheart.1996.271.6.H2661
  5. Chemla D, Hebert J-L, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol (Heart Circ Physiol 43)1998;274:H500–05.10.1152/ajpheart.1998.274.2.H500
  6. Olufsen MS, Ottesen JT, Tran HT, et al. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 2005;99:1523–37.1586068710.1152/japplphysiol.00177.2005
  7. Moshkovitz Y, Kaluski E, Milo O, et al. Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Curr Opin Cardiol 2004;19:229–37.10.1097/00001573-200405000-0000815096956
  8. Summers RL, Shoemaker WC, Peacock DF, et al. Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 2003;10:669–80.10.1111/j.1553-2712.2003.tb00054.x12782531
  9. Newman DG, Callister R. The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review. Aviat Space Environ Med. 1999;70:780–9.10447052
  10. Woltjer HH, Bogaard HJ, deVries PM. The technique of impedance cardiography. Eur Heart J 1997;18:1396–403.945844410.1093/oxfordjournals.eurheartj.a015464
  11. Kauppinen PK, Hyttinen JA, Malmivuo JA. Senstitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann Biomed Eng 1998;26:694–702.10.1114/1.44
  12. Raaijmakers E, Faes TJ, Scholten RJ, et al. A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med 1999;27:1203–13.1039723010.1097/00003246-199906000-00053
  13. Bernstein DP. Impedance cardiography: development of the stroke volume equations and their electrodynamic and biophysical foundations. In: Leondes CT, editor. Biomechanical systems technology: cardiovascular systems. Singapore: World Scientific; 2007. p. 49–87.
  14. Visser KR, Lamberts R, Zijlstra WG. Investigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dog. Cardiovasc Res 1990;24:24–32.10.1093/cvr/24.1.242328511
  15. Visser KR, Lamberts R, Zijlstra WG. Investigation of the parallel conductor model of impedance cardiography by means of exchange transfusion with stroma free haemoglobin solution. Cardiovasc Res 1987;21:637–45.10.1093/cvr/21.9.6373446367
  16. Wang L, Patterson R. Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models. IEEE Trans Biomed Eng 1995;42:141–8.10.1109/10.3418267868141
  17. Geddes LA, Sadler C. The specific resistance of blood at body temperature. Med Biol Eng Comput 1973;11:1973.
  18. Sakamoto K, Kanai H. Electrical characteristics of flowing blood. IEEE Trans Biomed Eng 1979;26:686–95.544441
  19. Visser KR. Electrical properties of flowing blood and impedance cardiography. Ann Biomed Eng. 1989;17:463–73.10.1007/BF02368066
  20. Kosicki J, Chen LH, Hobbie R, et al. Contributions to the impedance cardiogram waveform. Ann Biomed Eng 1986;14:67–80.10.1007/BF023646493706856
  21. Ravi Shankar TM, Webster JG, Shao SY. The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse. IEEE Trans Biomed Eng 1985;32:192–98.3997176
  22. Hoetink AE, Faes TJ, Visser KR et al. On the flow dependency of the electrical conductivity of blood. IEEE Trans Biomed Eng 2004;51:1251–61.10.1109/TBME.2004.82726315248541
  23. Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans Biomed Eng 2008;55:721–27.1827000910.1109/TBME.2007.903531
  24. Saito Y, Goto T, Terasaki H, et al. The effects of pulmonary circulation pulsatility on the impedance cardiogram. Arch Int Physiol Biochim 1983;91:339–44.6202263
  25. Ito H, Yamakoshi KI, Yamada A. Physiological and fluid-dynamic investigations of the transthoracic impedance plethysmography method for measuring cardiac output. Part II-Analysis of the transthoracic impedance wave by perfusing dogs. Med Biol Eng Comput 1976;14:373–8.10.1007/BF02476113
  26. Yamakoshi KI, Ito H, Yamada A, et al. Physiological and fluid-dynamic investigations of the transthoracic impedance plethysmography method for measuring cardiac output: Part 1-A fluid-dynamic approach using an expansible tube model. Med Biol Eng Comput 1976;14:365–72.10.1007/BF02476112
  27. Nyboer J. Electrical impedance plethysmogrphy; a physical and physiologic approach to peripheral vascular study. Circulation 1950;2:811–21.10.1161/01.CIR.2.6.81114783833
  28. Lamberts R, Visser KR, Zijlstra WG. Impedance Cardiography. Assen, The Netherlands, Van Gorcum; 1984.
  29. Kubicek WG, Karnegis JN, Patterson RP et al. Development and evaluation of an impedance cardiac output system. Aerosp Med 1966;37:1208–12.5339656
  30. Kubicek WG, Kottke J, Ramos MU, et al. The Minnesota impedance cardiograph-theory and applications. Biomed Eng 1974;9:410–16.4416602
  31. Quail AW, Traugott FM, Porges WL, et al. Thoracic resistivity for stroke volume determination in impedance cardiography. J Appl Physiol 1981;50:191–95.10.1152/jappl.1981.50.1.191
  32. Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 1986;14:904–09.10.1097/00003246-198610000-000173757533
  33. Feldschuh J, Enson Y. Prediction of the normal blood volume. Relation of blood volume to body habitus. Circulation 1977;56:605–12.
  34. Djordjevich L, Sadove MS, Mayoral J, et al. Correlation between arterial blood pressure levels and (dZ/dt)min in impedance plethysmography. IEEE Trans Biomed Eng 1985;32:69–73.
  35. Brown CV, Shoemaker WC, Wo CC, et al. Is noninvasive hemodynamic monitoring appropriate for the elderly critically injured patient? J Trauma 2005;58:102–71567415810.1097/01.TA.0000105990.05074.4A
  36. Faes TJ, Raaijmakers E, Meijer JH, et al. Towards a theoretical understanding of stroke volume estimation with impedance cardiography. Ann NY Acad Sci 1999;873:128–34.10.1111/j.1749-6632.1999.tb09459.x
  37. Bernstein DP, Lemmens HJ. Stroke volume equation for impedance cardiography. Med Biol Eng Comput 2005;43:443–50.1625542510.1007/BF02344724
  38. Gardin JM, Burn CS, Childs WJ, et al. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography. Am Heart J 1984;107:310–19.10.1016/0002-8703(84)90380-66695664
  39. Matsuda Y, Yamada S, Kuragane H, et al. Assessment of left ventricular performance in man with impedance cardiography. Jpn Circ J 1978;42:945–54.10.1253/jcj.42.945731836
  40. Lozano DL, Norman G, Knox D, et al. Where to B in dZ/dt. Psychophysiology 2007;44:113–19.
  41. Debski TT, Zhang Y, Jennings JR, et al. Stability of cardiac impedance measures: aortic valve opening (B point) detection and scoring. Biol Psychol 1993;36:63–74.10.1016/0301-0511(93)90081-I8218625
  42. Adler D, Nikolic SD, Pajaro O, et al. Time to dP/dtmax reflects both inotropic and chronotropic properties of cardiac contraction. Physiol Meas 1996;17:287–9510.1088/0967-3334/17/4/0068953627
  43. Lyseggen E, Rabben SI, Skulstad H, et al. Myocardial acceleration during isovolumic contraction: relationship to contractility. Circulation 2005;111:1362–9.1575321710.1161/01.CIR.0000158432.86860.A6
  44. Welham KC, Mohapatra SN, Hill DW, et al. The first derivative of the transthoracic electrical impedance as an index of changes in myocardial contractility in the intact anaesthetized dog. Intensive Care Med 1978;4:43–50.10.1007/BF01683136
  45. Kim DW. Detection of physiologic events by impedance. Yonsei Med J 1989;30:1–11.10.3349/ymj.1989.30.1.1
  46. Rubal BJ, Baker LE, Poder TC. Correlation between maximum dZ/dt and parameters of left ventricular performance. Med Biol Eng Comput 1980;18:541–8.10.1007/BF024431247464275
  47. Barbacki M, Gluck A, Sandhage K. Estimation of the correlation between the transcutaneous aortic flow velocity curve and impedance cardiogram in normal children. Cor Vasa 1981;23:291–8.7297075
  48. Winter PJ, Deuchar DC, Noble MI, et al. Relationship between the ballistocardiogram and the movement of blood from the left ventricle in the dog. Cardiovasc Res 1967;1:194–200.605885710.1093/cvr/1.2.194
  49. Kubicek WG. On the source of peak first time derivative (dZ/dt) during impedance cardiography. Ann Biomed Eng 1989;17:459–62.261041710.1007/BF02368065
  50. Mohapatra SN, Hill DW. Origin of the impedance cardiogram. In: Mohapatra SN. Non-invasive cardiovascular monitoring by electrical impedance technique. London: Pitman Medical Limited.;1981. P. 41.
  51. Seitz WS, McIlroy MB. Interpretation of the HJ interval of the normal ballistocardiogram based on the principle of conservation of momentum and aortic ultrasonic Doppler velocity measurements during left ventricular ejection. Cardiovasc Res 1988;22:571–74.10.1093/cvr/22.8.5713073865
  52. Reeves TJ, Hefner LL, Jones WB, et al. Wide frequency range force ballistocardiogram: its correlation with cardiovascular dynamics. Circulation 1957;16:43–53.1344714910.1161/01.CIR.16.1.43
  53. Kolettis M, Jenkins BS, Webb-Peploe MM. Assessment of left ventricular function by indices derived from aortic flow velocity. Br Heart J 1976;38:18–31.125229210.1136/hrt.38.1.18
  54. Sohn S, Kim HS. Doppler aortic flow velocity measurements in healthy children. J Korean Med Sci 2001;16:140–4.10.3346/jkms.2001.16.2.140
  55. Wallmeyer K, Wann LS, Sagar KB, et al. The influence of preload and heart rate on Doppler echocardiographic indexes of left ventricular performance: comparison with invasive indexes in an experimental preparation. Circulation 1986;74:181–6.10.1161/01.CIR.74.1.181
  56. Ehlert RE, Schmidt HD. An experimental evaluation of impedance cardiographic and electromagnetic measurements of stroke volumes. J Med Eng Technol 1982;6:193–200.10.3109/030919082090410197143415
  57. Wallace AW, Salahieh A, Lawrence A, et al. Endotracheal cardiac output monitor. Anesthesiology 2000;92:178–89.10.1097/00000542-200001000-0003010638915
  58. Rex S, Brose S, Metzelder S, et al. Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth 2004;93:782–8.10.1093/bja/aeh28015465840
  59. Della Rocca G, Costa GM, Coccia C, et al. Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation. Anesth Analg 2002;95:835–43.12351254
  60. Godje O, Peyerl M, Seebauer T, et al. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes a preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 1998;13:533–9.10.1016/S1010-7940(98)00063-39663534
  61. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004;32:691–99.1509094910.1097/01.CCM.0000114996.68110.C9
  62. Lindstedt L, Schaeffer PJ. Use of allometry in predicting anatomical and physiologic parameters of mammals. Lab Anim 2002;36:1–19.10.1258/0023677021911731
  63. Feldschuh J, Enson Y. Prediction of normal blood volume: relation of blood volume to body habitus. Circulation 1977;56:605–12.10.1161/01.CIR.56.4.605902387
  64. Collis T, Devereux RB, Roman MJ, et al. Relations of stroke volume and cardiac output to body composition: the strong heart study.Circulation 2001;103:820–5.1117178910.1161/01.CIR.103.6.820
  65. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science 1997;276:122–6.908298310.1126/science.276.5309.122
  66. Holt JP, Rhode A, Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968;215:704–15.567101010.1152/ajplegacy.1968.215.3.704
  67. Hofer CK, Zalunardo P, Klaghofer R, et al. Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning. Acta Anaesthesiol Scand. 2002;46:303–8.10.1034/j.1399-6576.2002.t01-1-460313.x11939922
  68. Sageman WS. Reliability and precision of a new thoracic electrical bioimpedance monitor in a lower body negative pressure model. Crit Care Med 1999;27:1986–90.10.1097/00003246-199909000-00044
  69. Goldman JH, Schiller NB, Lim DC, et al. usefulness of stroke distance by echocardiography as a surrogate marker of cardiac output that is independent of gender and size in a normal population. Am J Cardiol 2001;87:499–502.10.1016/S0002-9149(00)01417-X
  70. Young JD, McQuillan P. Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 1993:70:58–62.
  71. Raaijmakers E, Faes TJ, Kunst PW, et al. The influence of extravascular lung water on cardiac output measurements using thoracic impedance cardiograph. Physiol Meas 1998;19:491–9.10.1088/0967-3334/19/4/004
  72. Genoni M, Pelosi P, Romand JA, et al. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure. Crit Care Med 1998;26:1441–5.971010710.1097/00003246-199808000-00035
  73. Critchley LA, Calcroft RM, Tan PY, et al. The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill. Intensive Care Med. 2000;26:679–85.1094538310.1007/s001340051232
  74. Peng ZY, Critchley LA, Fok BS. An investigation to show the effect of lung fluid on impedance cardiac output in the anaesthetized dog. Br J Anaesth 2005;95:458–64.1605165110.1093/bja/aei206
  75. Schmidt C, Theilmeier G, Van Aken H, et al. Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 2005;95:603–1010.1093/bja/aei22416155037
  76. Suttner S, Schollhorn T, Boldt J, et al. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 2006;32:1253–8.
  77. Norozi K, Thrane L, Manner J, et al. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 2008;100:88–94.1802495410.1093/bja/aem320
  78. Zoremba N, Bickenbach J, Krauss B, et al. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand 2007;51:1314–9.1794463310.1111/j.1399-6576.2007.01445.x
DOI: https://doi.org/10.5617/jeb.51 | Journal eISSN: 1891-5469
Language: English
Page range: 2 - 17
Submitted on: Nov 25, 2009
Published on: Dec 3, 2009
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2009 Donald P. Bernstein, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.