Have a personal or library account? Click to login
Testing miniaturized electrodes for impedance measurements within the β-dispersion – a practical approach Cover

Testing miniaturized electrodes for impedance measurements within the β-dispersion – a practical approach

Open Access
|Apr 2010

References

  1. Yang L., Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes., Talanta 2008;74(5):1621-9.10.1016/j.talanta.2007.10.01818371827
  2. Zheng S, Liu M, Tai YC., Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing., Biomed Microdevices 2008;10(2):221-31.10.1007/s10544-007-9128-517876707
  3. Asphahani F, Zhang M., Cellular impedance biosensors for drug screening and toxin detection., Analyst 2007; 132(9):835-41.1771025810.1039/b704513a
  4. Jang LS, Wang MH., Microfluidic device for cell capture and impedance measurement., Biomed Microdevices 2007;9(5):737-43.1750828510.1007/s10544-007-9084-0
  5. Zhou H, Tilton RD, White LR., The role of electrode impedance and electrode geometry in the design of microelectrode systems., J Coll Interf Sci 2006;297:819-31.10.1016/j.jcis.2005.11.024
  6. Pernkopf W, Sagl M, Fafilek G, Besenhard JO, Kronberger H, Nauer GE., Applications of microelectrodes in impedance spectroscopy., Solid State Ionics 2005;176:2031-6.10.1016/j.ssi.2004.12.016
  7. Price DT, Rahman ARA, Bhansali S., Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS)., Biosensors and Bioelectronics 2008;24(7):2071-6.
  8. Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Academic Press; 2000.
  9. Foster KR, Schwan HP., Dielectric properties of tissues and biological materials : A critical review., CRC Crit Rev Biomed Eng 1989;17:25-104.
  10. Muller MR, Salat A, Pulaki S, Stangl P, Ergun E, Schreiner W, et al., Influence of hematocrit and platelet count on impedance and reactivity of whole blood for electrical aggregometry., J Pharmacol Toxicol Methods 1995;34(1):17-22.10.1016/1056-8719(94)00075-F7496042
  11. Zhao TX, Lockner D., Electrical impedance and erythrocyte sedimentation rate (ESR) of blood., Biochim Biophys Acta 1993;1153(2):243-8.10.1016/0005-2736(93)90411-R8274493
  12. Pethig R, Kell DB., The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology., Phys Med Biol 1987;32(8):933-70.10.1088/0031-9155/32/8/0013306721
  13. Damez JL, Clerjon S, Abouelkaram S, Lepetit J., Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing., J Food Engineering 2008;85(116):122.
  14. Oliver MA, Gobantes I, Arnau J, Elvira J, Riu P, Grebol N, et al., Evaluation of the electrical impedance spectroscopy (EIS) equipment for ham meat quality selection., Meat Sci 2001;58:305-12.2206226110.1016/S0309-1740(01)00033-X
  15. Chanet M, Riviere C, Eynard P., Electric impedance spectrometry for the control of manufacturing process of comminuted meat products., J Food Engineering 1999;42:153-9.10.1016/S0260-8774(99)00113-2
  16. Nacke T, Bruckner K, Goller A, Kaufhold S, Nakos X, Noack S, et al., New type of dry substances content meter using microwaves for application in biogas plant., Analytical Bioanalytical Chemistry 2006;383:252-7.
  17. Kell DB, Markx GH, Davey CL, Todd RW., Real-time monitoring of cellular biomass. Methods and applications., Trends Anal Chem 1990;9:190-4.10.1016/0165-9936(90)87042-K
  18. Orazem ME, Tribollet B., An integrated approach to electrochemical impedance spectroscopy., Electrochimia Acta 2008;53(25):7360-6.10.1016/j.electacta.2007.10.075
  19. K'Owino IO, Sadik OA., Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring., Electroanalysis 2005;17(23):2101-13.10.1002/elan.200503371
  20. Sun T, Holmes D, Green NG, Morgan H., High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences., Lab Chip 2007;7:1034-40.10.1039/b703546b
  21. Watkins N, Venkatesan BM., A robust electrical microcytometer with 3-dimensional hydrofocusing., Lab on a Chip 2010;9(22):3177-84.
  22. Ghanbari K, Bathaie SZ, Mousavi MF., Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor., Biosens Bioelectron 2008;23(12):1825-31.1840659810.1016/j.bios.2008.02.029
  23. Varshney M, Li Y., Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium., Talanta 2008;74(4):518-25.1837167010.1016/j.talanta.2007.06.027
  24. Linderholm P, Marescot L, Loke MH, Renaud P., Cell culture imaging using microimpedance tomography., IEEE Trans Biomed Eng 2008;55(1):138-46.1823235510.1109/TBME.2007.910649
  25. Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB., Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes., J Neural Eng 2008;5(1):54-67.1831081110.1088/1741-2560/5/1/006
  26. Panescu D, Webster JG, Stratbucker RA., A nonlinear finite element model of the electrode-electrolyte- skin system., IEEE Trans Biomed Eng 1994;41(7):681-7.10.1109/10.3017357927389
  27. Ahuja AK, Behrend MR, Whalen JJ, Humayun MS, Weiland JD., The Dependence of Spectral Impedance on Disc Microelectrode Radius., IEEE Trans Biomed Eng 2008;55(4):1457-60.1839034010.1109/TBME.2007.912430
  28. Schwan HP. Electrical Properties of Tissue and Cell Suspensions. In: Lawrence JH, Tobias CA, editors.New York: Academic Press; 1957. p. 147.
  29. Schwan HP., Mechanisms responsible for electrical properties of tissues and cell suspensions., Med Prog Technol 1993;19(4):163-5.8052170
  30. Pauly H, Schwan HP., Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale., Z Naturforsch 1957;14(b):125-31.
  31. Raicu V, Raicu G, Turcu G., Dielectric properties of yeast cells as simulated by the two-shell model., BBA 1996;1274:143-8.8664306
  32. Feldmann Y, Ermolina I, Hayashi Y., Time Domain Spectroscopy Study on biological Systems., IEEE Transactions on Dielectrics and Electrical Insulation 2003;10:728-53.10.1109/TDEI.2003.1237324
  33. Gabriel S, Lau RW, Gabriel C., The dielectric properties of biological tissues: III Parametric models for the dielectric spectrum of tissues., Phys Med Biol 1996;41:2271-93.893802610.1088/0031-9155/41/11/003
  34. Angersbach A, Heinz V, Knorr D., Electrophysiological model of intact and processed plant tissues:cell disintegration criteria., Biotechnol Prog 1999;15:753-62.10.1021/bp990079f10441367
  35. Holmes D, Pettgrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, et al., Leukocyte analysis and differentiation using high speed microfluidic single cell impedance spectroscopy., Lab on a Chip 2009;9:2881-9.10.1039/b910053a
  36. Bragos R, Sarro E, Fontova A, Soley A, Cairo J, Bayes-Genis A, et al., Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy., Conf Proc IEEE Eng Med Biol Soc 2006;1:2106-9.17946497
  37. Urdapilleta E, Bellotti M, Bonetto FJ., Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique., Phys Rev E Stat Nonlin Soft Matter Phys 2006;74(4 Pt 1):041908.10.1103/PhysRevE.74.04190817155097
  38. Fomekong RD, Pliquett U, Pliquett F., Passive electrical properties of RBC suspensions: changes due to distribution of relaxation times in dependence on the cell volume fraction and medium conductivity., Bioelectrochem and Bioenerg 1998;47:81-8.10.1016/S0302-4598(98)00161-5
  39. Cha K, Brown EF, Wilmore DW., A new bioelectrical impedance method for measurement of the erythrocyte sedimentation rate., Physiol Meas 1994;15(4):499-508.788137110.1088/0967-3334/15/4/011
  40. Lee SW, Tai YC., A micro cell lysis device., Sensors and Actuators 1999;73(1-2):74-9.10.1016/S0924-4247(98)00257-X
  41. Suehiro J, Shutou M, Hatano T, Hara M., High sensitive detection of biological cell using dielectrophoretic impedance measurement method combined with electropermebilization., Sensors and Actuators 2003;96:144-51.10.1016/S0925-4005(03)00517-3
  42. Davey CL, Davey HM, Kell DB., Introduction to the Dielectric Estimation of Cellular Biomass in Real Time, with Special Emphasis on Measurements at high Volume Fractions., Analytica Chemica Acta 1993;279:155-61.10.1016/0003-2670(93)85078-X
  43. Agilent Technologies. Agilent Impedance Measurement Handbook: A guide to measurement and techniques. 2009. Ref Type: Data File
  44. Nelson SO, Bartley Jr. PG., Frequency and temperature dependence of the dielectric properties of food materials., Transactions of the ASAE 2002;45(4):1223-7.
  45. Mirtaheri P, Grimnes S, Martinsen OG., Electrode polarization impedance in weak NaCl aqueous solutions., IEEE Trans Biomed Eng 2005;52(12):2093-9.1636623210.1109/TBME.2005.857639
  46. Ragheb T, Geddes LA., The polarization impedance of common electrode metals operated at low current density., Ann Biomed Eng 1991;19(2):151-63.10.1007/BF023684662048774
  47. Cole KS. Membranes, Ions and Impulses. University of California Press; 1968.
  48. Gabriel S, Lau RW, Gabriel C., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz., Phys Med Biol 1996;41:2251-69.893802510.1088/0031-9155/41/11/002
  49. Hamann CH, Vielstich W. Elektrochemie. Weinheim: Wiley-VCH Verlag GmbH; 1998.
  50. Troy JB, Cantrell DR, Taflove A, Ruoff RS., Modeling the electrode-electrolyte interface for recording and stimulating electrodes., Conf Proc IEEE Eng Med Biol Soc 2006;1:879-81.17945606
  51. Zhou H, Tilton RD, White LR., The role of electrode impedance and electrode geometry in the design of microelectrode systems., J Colloid Interface Sci 2006;297(2):819-31.10.1016/j.jcis.2005.11.02416332373
  52. Franks W, Schenker I, Schmutz P, Hierlemann A., Impedance characterization and modeling of electrodes for biomedical applications., IEEE Trans Biomed Eng 2005;52(7):1295-302.1604199310.1109/TBME.2005.847523
  53. Zhou H, Preston MA, Tilton RD, White LR., Calculation of the dynamic impedance of the double layer on a planar electrode by the theory of electrokinetics., J Coll Interf Sci 2005;292:277-89.10.1016/j.jcis.2005.05.037
  54. Koester O, Schuhmann W, Vogt H, Mokwa W., electrochemical impedance spectroscopy, Quality control of ultra-micro electrode arrays, using cyclic voltammetry and scanning electrochemical microscopy., Sensors and Actuators 2001;76:573-81.10.1016/S0925-4005(01)00637-2
  55. Bates JB, Chu YT., Electrode-electrolyte interface impedance: experiments and model., Ann Biomed Eng 1992;20(3):349-62.144382910.1007/BF02368536
  56. MacDonald JR. Impedance spectroscopy. New York: John Wiley & Sons; 1987.
  57. Ackmann JJ, Seits M.A., Methods of Complex Impedance Measurements in Biological Tissue., CRC Critical Revue in Biol Eng 1984;11(4):281-311.
  58. Geddes LA., Who introduced the tetrapolar method for Measuring resistance and impedance?, IEEE Eingineering in Medicine and Biology 1996;133-4.
  59. Paixao TR, Richter EM, Brito-Neto JG, Bertotti M., Fabrication of a new generator-collector electrochemical micro-device: Characterizations and applications., Electrochemistry Communications 2006;8:9-14.10.1016/j.elecom.2005.10.024
  60. Nacke T, Barthel A, Friedrich J, Helbig M, Sachs J, Peyerl P, et al. A new hard and software concept for impedance spectroscopy analyzers for broadband process measurements. ICEBI 2007; Berlin-Heidelberg: Springer Verlag; 2007 p. 194-7.
  61. Rahman ARA, Priece DT, Bhansali S., Effect of electrode geometry on the impedance evaluation of tissue and cell culture., Sensors and Actuators 2007;127:89-96.10.1016/j.snb.2007.07.038
  62. McAdams ET, Lackermeier A, McLaughlin JA, Macken D, Jossinet J., The linear and non-linear electrical properties of the electrode-electrolyte interface., Biosensors and Bioelectronics 1995;10:67-74.10.1016/0956-5663(95)96795-Z
  63. McAdams ET, Jossinet J., The detection of the onset of electrode-electrolyte interface impedance nonlinearity: a theoretical study., IEEE Trans Biomed Eng 1994;41(5):498-500.807081010.1109/10.293225
  64. Grodrian A, Metze J, Henkel T, Martin K, Roth M, Koehler JM., Segment flow generation by chip reactors for highly parallelizid cell cultivation., Biosensors and Bioelectronics 2004;19(11):1421-8.10.1016/j.bios.2003.12.021
DOI: https://doi.org/10.5617/jeb.111 | Journal eISSN: 1891-5469
Language: English
Page range: 41 - 55
Submitted on: Mar 26, 2010
Published on: Apr 7, 2010
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2010 Uwe Pliquett, Dieter Frense, Markus Schönfeldt, Christian Frätzer, Yong Zhang, Brian Cahill, Michael Metzen, Andreas Barthel, Thomas Nacke, Dieter Beckmann, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.