Have a personal or library account? Click to login
Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It Cover

Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It

Open Access
|Jun 2017

References

  1. Acuna-Askar K., M.A. de la Torre-Torres, M.J. Guerrero-Munoz, M.T. Garza-Gonzalez, B. Chavez-Gomez, I.P. Rodriguez-Sanchez and H.A. Barrera-Saldana. 2006. Biodegradation kinetics of BTE-OX and MTBE by a diesel-grown biomass. Water Sci. Technol. 53(11): 197–204.
  2. Bagnéris C., R. Cammack and J.R. Mason. 2005. Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida. Appl. Environ. Microb. 71: 1570–1580.10.1128/AEM.71.3.1570-1580.2005106517215746362
  3. Bell T.H., E. Yergeau, D.F. Juck, L.G. Whyte and C.W. Greer. 2013. Alteration of microbial community structure affects diesel biodegradation in an Arctic soil. FEMS Microbiol. Lett. 85: 51–61.10.1111/1574-6941.1210223488635
  4. Ciric L., J.C. Philp and A.S. Whiteley. 2010. Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol. Lett. 303: 116–122.10.1111/j.1574-6968.2009.01871.x20030730
  5. Cyplik P., M. Schmidt, A. Szulc, R. Marecik, P. Lisiecki, H.J. Heipieper, M. Owsianiak, M. Vaishtein and L. Chrzanowski. 2011. Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Bioresource Technol. 102: 4347–43562.10.1016/j.biortech.2010.12.06821239170
  6. Dalvi S., C. Nicholson, F. Najar, B.A. Roe, P. Canaan, S.D. Hartson and B.Z. Fathepure. 2014. Arhodomonas sp. Strain Seminole and its genetic potential to degrade aromatic compounds under highsalinity conditions. Appl. Environ. Microb. 80(21): 6664–6676.
  7. Díaz E., A. Fernández, M.A. Prieto and J.L. García. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. R. 65: 523–569.10.1128/MMBR.65.4.523-569.20019904011729263
  8. Dean B.J. 1985. Recent findings on the genetic toxicity of benzene, toluene, xylenes, and phenol. Mutat Res. 145: 153–181.
  9. Demanèche S., C. Meyer, J. Micoud, M. Louwagie, J.C. Willison and Y. Jouanneau. 2004. Identification and functional analysis of two aromatic ring-hydroxylating dioxygenases from a Sphingomonas strain degrading various polycyclic aromatic hydrocarbons. Appl. Environ. Microb. 70: 6714–6725.10.1128/AEM.70.11.6714-6725.200452523815528538
  10. Fong K.P., C.B. Goh and H.M. Tan. 1996. Characterization and expression of the plasmid-borne bedD gene from Pseudomonas putida ML2, which codes for a NAD1-dependent cis-benzene dihydrodiol dehydogenase. J. Bacteriol. 178: 5592–5601.
  11. Gescher J., O. Ismail, E. Ölgeschläger, W. Eisenreich, J. Wörth and G. Fuchs. 2006. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J. Bacteriol. 18(8): 2919–2927.10.1128/JB.188.8.2919-2927.2006144699716585753
  12. Gibson D.T. and V. Subramanian. 1984. Microbial degradation of aromatic hydrocarbons, pp. 181–252. In: Gibson D.T. (ed.) Microbial degradation of organic compounds. Marcel Dekker, New York, NY.
  13. Kane R.S., A.Y. Chakicherla, P.S. Chain, R. Schmidt, M.W. Shin, T.C. Legler, K.M. Scow, F.W. Larimer, S.M. Lucas, P.M. Richardson and others. 2007. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J. Bacteriol. 189: 1931–1945.10.1128/JB.01259-06185572817158667
  14. Kim D., J.C. Chae, G.J. Zylstra, Y.S. Kim, S.K. Kim, N.H. Nam, Y.M. Kim and E. Kim. 2004. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl. Environ. Microb. 70: 7086–7092.
  15. Lawniczak L., E. Kaczorek and A. Olszanowski. 2011. The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World J. Microb. Biot. 27: 1183–1188.10.1007/s11274-010-0566-5
  16. Lima-Morales D., R. Jáuregui, A. Camarinha-Silva, R. Geffers, D.H. Pieper and R. Vilchez-Vargas. 2016. Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long term pollutant stress. Appl Environ Microb. 82(7): 2227–37.10.1128/AEM.03482-15480751226850298
  17. Lisiecki P., L. Chrzanowski, A. Szulc, L. Lawniczak, W. Bialas, M. Dziadas, M. Owsianiak, J. Staniewski, P. Cyplik, R. Marecik and others. 2014. Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel 116:321–327.10.1016/j.fuel.2013.08.009
  18. Lee S.K., and S.B. Lee. 2001. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene. Appl. Environ. Microb. 56: 270–275.
  19. Maeda T., Y. Takahaxhi, H. Suenaga, A. Suyama, M. Goto and K. Furukawa. 2001. Functional analyses of bph-tod hybrid dioxygenases, which exhibits high degradation activity toward trichoroethylene. J. Biol. Chem. 276: 29833–29838.
  20. Morlett-Chávez J.A., J.A. Ascacio-Martínez, A.M. Rivas-Estilla, J.F. Velázquez-Vadillo, W.E. Haskins, H.A. Barrera-Saldaña and K. Acuña-Askar. 2010. Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Int. Biodeter. Biodegr. 64(7): 581–587.
  21. Owsianiak M., L. Chrzanowski, A. Szulc, J. Staniewski, A. Olszanowski, A.K. Olejnik-Schmidt and H.J. Heipieper. 2009. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Biosource Technol. 100: 1497–1500.10.1016/j.biortech.2008.08.028
  22. Peters F., D. Heintz, J. Johannes, A. van Dorsselaer and M. Boll. 2007. Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. J. Bacteriol. 189: 4729–4738.
  23. Patrauchan M.A., C. Florizone, S. Eapen, L. Gómez-Gil, B. Sethuraman, M. Fukuda, J. Davies, W.W. Mohn and L.D. Eltis. 2008. roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA. J. Bacteriol. 190: 37–47.10.1128/JB.01122-07
  24. Pieper D.H. and W. Reineke. 2000. Engineering bacteria for bioremediation. Curr. Opin. Biotech. 11: 262–270.10.1016/S0958-1669(00)00094-X
  25. Potter T.L. 1992. Fingerprinting petroleum products: unleaded gasolines, pp. 83–92. In: Kostecki P.T. and E.J. Calabrese (ed.). Petroleum contaminated soils, vol 2. Lewis Publishers, Chelsea, Mich.
  26. Ramos-González M.I., A. Ben-Bassat, M.J. Camposm and J.L. Ramos. 2003. Genetic engineering of a highly solvent-tolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate. Appl. Environ. Microb. 69: 5120–5127.10.1128/AEM.69.9.5120-5127.2003
  27. Sabirova J.S., M. Ferrer, D. Regenhardt, K.N. Timmis and P.N. Golyshin. 2006. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J. Bacteriol. 188: 3763–3773.10.1128/JB.00072-06
  28. Shöber U., C. Thiel and D. Jendrossek. 2000. Poly (3-hydroxyvalerato) depolimerase of Pseudomonas lemoignei. Appl. Environ. Microb. 66(4): 1385–1392.
  29. Smith R.K. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191–206.10.1007/BF00058836
  30. Szczepaniak Z., J. Czarny, J. Staninska-Pieta, P. Lisiecki, A. Zgoła-Grześkowiak, P. Cyplik, L. Chrzanowski, L. Wolko, R. Marecik, W. Juzwa and others. 2016. Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids. Environ. Sci. Pollut. Res. 23(22): 23043–23056.10.1007/s11356-016-7500-9
  31. Tarasev M., C.S. Kaddis, S. Yin, J.A. Loo, J. Burgner and D.P. Ballou. 2007. Similar enzymes, different strctures: phtalato dyoxigenases is an α3α3 hexamer, not an α3β3 trimer like “normal” rieske oxygenases. Arch. Biochem. Biophys. 466: 31–39.
  32. Tsao C.W., H.G. Song and R. Bartha. 1998. Metabolism of benzene, toluene and xylene hydrocarbons in soil. Appl. Environ. Microb. 64: 4924–4929.
  33. Witzig R., H. Junca, H.J. Hecht and D.H. Pieper. 2006. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: Links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl. Environ. Microb. 72: 3504–3514.10.1128/AEM.72.5.3504-3514.2006
  34. Zylstra, G.J. and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264: 1940–1946. 10.1016/S0021-9258(18)63793-7
DOI: https://doi.org/10.5604/01.3001.0010.7836 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 189 - 199
Submitted on: Sep 21, 2016
Accepted on: Dec 6, 2016
Published on: Jun 28, 2017
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 JESÚS A. MORLETT CHÁVEZ, JORGE Á. ASCACIO MARTÍNEZ, WILLIAM E. HASKINS, KARIM ACUÑ ASKAR, HUGO A. BARRERA SALDAÑA, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.