Have a personal or library account? Click to login
Effect of Tinospora crispa on glucose uptake in skeletal muscle: role of glucose transporter 1 expression and extracellular signal-regulated kinase1/2 activation Cover

Effect of Tinospora crispa on glucose uptake in skeletal muscle: role of glucose transporter 1 expression and extracellular signal-regulated kinase1/2 activation

Open Access
|Feb 2017

References

  1. 1. Hansen BC. The metabolic X syndrome. Ann NY Acad Sci. 1999; 892:1-24.10.1111/j.1749-6632.1999.tb07782.x
  2. 2. Skyler J. Diabetes mellitus: pathogenesis and treatment strategies. J Med Chem. 2004; 47:4113-7.10.1021/jm0306273
  3. 3. Noor H, Ashcroft SJ. Antidiabetic effects of Tinospora crispa in rats. J Ethnopharmacol. 1989; 27:149-61.10.1016/0378-8741(89)90087-1
  4. 4. Noor H, Hammonds P, Sutton R, Ashcroft SJ. The hypoglycaemic and insulinotropic activity of Tinospora crispa: studies with human and rat islets and HIT-T15 B cells. Diabetologia. 1989; 32:354-9.10.1007/BF00277258
  5. 5. Noor H, Ashcroft SJ. Pharmacological characterisation of the antihyperglycaemic properties of Tinospora crispa extract. J Ethnopharmacol. 1998; 62:7-13.10.1016/S0378-8741(98)00008-7
  6. 6. Noipha K, Purintrapiban J, Herunsalee A, Ratanachaiyavong S. In vitro glucose uptake activity of Tinospora crispa in skeletal muscle cells. Asian Biomed. 2008; 2:415-20.
  7. 7. Klip A, Marette A. Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem. 1992; 48:51-60.10.1002/jcb.240480109
  8. 8. Sakamoto K, Goodyear LJ. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol. 2002; 93:369-83.10.1152/japplphysiol.00167.2002
  9. 9. Fukumoto H, Kayano T, Buse JB, Edwards Y, Pilch PF, Bell GI, et al. Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem. 1989; 264:7776-9.10.1016/S0021-9258(18)83106-4
  10. 10. Fingar DC, Birnbaum MJ. A role for Raf-1 in the divergent signaling pathways mediating insulinstimulated glucose transport. J Biol Chem. 1994; 269: 10127-32.10.1016/S0021-9258(17)36999-5
  11. 11. Hausdorff SF, Frangioni JV, Birnbaum MJ. Role of p21ras in insulin-stimulated glucose transport in 3T3- L1 adipocytes. J Biol Chem. 1994; 269:21391-4.10.1016/S0021-9258(17)31813-6
  12. 12. Hausdorff SF, Bennett AM, Neel BG, Birnbaum MJ. Different signaling roles of SHPTP2 in insulin-induced GLUT1 expression and GLUT4 translocation. J Biol Chem. 1995; 270:12965-8.10.1074/jbc.270.22.12965
  13. 13. Yamamoto Y, Yoshimasa Y, Koh M, Suga J, Masuzaki H, Ogawa Y, et al. Constitutively active mitogenactivated protein kinase kinase increases GLUT1 expression and recruits both GLUT1 and GLUT4 at the cell surface in 3T3-L1 adipocytes. Diabetes. 2000; 49: 332-9.10.2337/diabetes.49.3.332
  14. 14. Abbud W, Habinowski S, Zhang JZ, Kendrew J, Elkairi FS, Kemp BE, et al. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Arch Biochem Biophys. 2000; 380:347-52.10.1006/abbi.2000.1935
  15. 15. Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LG, et al. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMPactivated protein kinase (AMPK). J Cell Sci. 2002; 115: 2433-42.10.1242/jcs.115.11.2433
  16. 16. Jing M, Ismail-Beigi F. Role of 5'-AMP-activated protein kinase in stimulation of glucose transport in response to inhibition of oxidative phosphorylation. Am J Physiol Cell Physiol. 2006; 290:C484-91.10.1152/ajpcell.00321.2005
  17. 17. Wagner H, Bladt S. Plant drug analysis: A Thin Layer Chromatography Atlas. 2nd ed. New York: Berlin Springer-Verlag; 1996.10.1007/978-3-642-00574-9
  18. 18. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990; 82:1107-12.10.1093/jnci/82.13.1107
  19. 19. Kokta TA, Dodson MV, Gertler A, Hill RA. Intercellular signaling between adipose tissue and muscle tissue. Domest Anim Endocrinol. 2004; 27:303-31.10.1016/j.domaniend.2004.05.004
  20. 20. Ciaraldi TP, Knudsen KH, Hickman M, Olefsky JM. Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism. 1995; 44: 976-81.10.1016/0026-0495(95)90092-6
  21. 21. Klip A, Guma A, Ramlal T, Bilan PJ, Lam L, Leiter LA. Stimulation of hexose transport by metformin in L6 muscle cells in culture. Endocrinology. 1992; 130: 2535-44.10.1210/endo.130.5.15722811572281
  22. 22. Hundal HS, RamLal T, Reyes R, Leiter LA, Klip A. Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology. 1992; 131:1165-73.10.1210/endo.131.3.15054581505458
  23. 23. Taha C, Mitsumoto Y, Liu Z, Skolnik EY, Klip A. The insulin-dependent biosynthesis of GLUT1 and GLUT3 glucose transporters in L6 muscle cells is mediated by distinct pathways. Roles of p21ras and pp70 S6 kinase. J Biol Chem. 1995; 270: 24678-81.10.1074/jbc.270.42.246787559581
  24. 24. Taha C, Liu Z, Jin J, Al-Hasani H, Sonenberg N, Klip A. Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J Biol Chem. 1999; 274:33085-91.10.1074/jbc.274.46.3308510551878
  25. 25. Somwar R, Sumitani S, Taha C, Sweeney G, Klip A. Temporal activation of p70 S6 kinase and Akt1 by insulin: PI 3-kinase-dependent and -independent mechanisms. Am J Physiol. 1998; 275:E618-25.10.1152/ajpendo.1998.275.4.E6189755080
  26. 26. Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, et al. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. Mol Endocrinol. 2003; 17:487-97.10.1210/me.2002-013112554784
  27. 27. Fryer LG, Parbu-Patel A, Carling D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMPactivated protein kinase through distinct signaling pathways. J Biol Chem. 2002; 277:25226-32.10.1074/jbc.M20248920011994296
  28. 28. Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M. Expanding role of AMPK in endocrinology. Trends Endocrinol Metab. 2006; 17: 205-15.10.1016/j.tem.2006.05.00616766204
  29. 29. Ye JM, Dzamko N, Hoy AJ, Iglesias MA, Kemp B, Kraegen E. Rosiglitazone treatment enhances acute AMP-activated protein kinase-mediated muscle and adipose tissue glucose uptake in high-fat-fed rats. Diabetes. 2006; 55:2797-804.10.2337/db05-131517003345
  30. 30. Kim SH, Shin EJ, Kim ED, Bayaraa T, Frost SC, Hyun CK. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull. 2007; 30: 2120-5.10.1248/bpb.30.212017978486
  31. 31. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMPactivated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006; 55:2256-64.10.2337/db06-000616873688
  32. 32. Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. 2007; 56: 405-12.10.1016/j.metabol.2006.10.02517292731
  33. 33. Bisset NG, Nwaiwu J. Quaternary alkaloids of Tinospora species. Planta Medica. 1983; 48:275-9.10.1055/s-2007-96993317404996
  34. 34. Srinivasan GV, Unnikrishnan KP, Rema Shree AB, Balachandran I. HPLC estimation of berberine in Tinospora cordifolia and Tinospora sinensis. Indian J Pharm Sci. 2008; 70:96-9. 10.4103/0250-474X.40341285207120390090
DOI: https://doi.org/10.5372/1905-7415.0503.047 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 361 - 369
Published on: Feb 4, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Kusumarn Noipha, Suvina Ratanachaiyavong, Juntipa Purintrapiban, Angkana Herunsalee, Putrada Ninla-aesong, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.