Have a personal or library account? Click to login
Dynamic planning approach of facility layout from industry perspectives: A systematic literature review Cover

Dynamic planning approach of facility layout from industry perspectives: A systematic literature review

Open Access
|Feb 2025

References

  1. Adeyeri, M.K., Ayodeji, S.P., 2022. Comparative analysis of static and dynamic facility layouts design using the modeling of plantain flour as case study. Prod. Eng. Arch. 28, 12–20. DOI: 10.30657/pea.2022.28.02
  2. Adeyeri, M.K., Ayodeji, S.P., Adeleye, A., 2021. Modelling of Facility Layout Improvement and Breakeven Point Forecast for Plantain Flour Production. Int. J. Integr. Eng. 13, 1–6. DOI: 10.30880/ijie.2021.13.01.001
  3. Ahmadi-Javid, A., Ardestani-Jaafari, A., 2021. The unequal area facility layout problem with shortest single-loop AGV path: how material handling method matters. Int. J. Prod. Res. 59, 2352–2374. DOI: 10.1080/00207543.2020.1733124
  4. Al-Zubaidi, S.Q.D., Fantoni, G., Failli, F., 2021. Analysis of drivers for solving facility layout problems: Literature review. J. Ind. Inf. Integr. 21, 100187. DOI: 10.1016/j.jii.2020.100187
  5. Annamalai, S., Vinoth, K., Bagathsingh, N., 2020. Analysis of lean manufacturing layout in a textile industry. Mater. Today Proc. 33, 3486–3490. DOI: 10.1016/j.matpr.2020.05.409
  6. Arifin, H., 2020. Penerapan Metode Analisis Beban Kerja untuk Meningkatkan Produktivitas di Bagian Case Assy Up di PT. Yamaha Indonesia. Teknoin 26, 83–95. DOI: 10.20885/teknoin.vol26.iss2.art1
  7. Azadeh, A., Motevali Haghighi, S., Asadzadeh, S.M., 2014. A novel algorithm for layout optimization of injection process with random demands and sequence dependent setup times. J. Manuf. Syst. 33, 287–302. DOI: 10.1016/j.jmsy.2013.12.008
  8. Azimi, P., Soofi, P., 2017. An ANN-based optimization model for facility layout problem using simulation technique. Sci. Iran. 24, 364–377. DOI: 10.24200/sci.2017.4040
  9. Baykasoğlu, A., Nabil N.Z. Gindy, 2001. A simulated annealing algorithm for dynamic layout problem. Comput. Oper. Res. 28, 1403–1426.
  10. Benjaafar, S., Sunderesh S, H., Shahrukh A, I., 2002. Next generation factory layouts: Research challenges and recent progress. J. Allergy Clin. Immunol. 130, 556.
  11. Besbes, M., Affonso, R.C., Zolghadri, M., Masmoudi, F., Haddar, M., 2017. Multi-criteria decision making for the selection of a performant manual workshop layout: a case study. IFAC-PapersOnLine 50, 12404–12409. DOI: 10.1016/j.ifacol.2017.08.2424
  12. Bozorgi, N., Abedzadeh, M., Zeinali, M., 2015. Tabu search heuristic for efficiency of dynamic facility layout problem. Int. J. Adv. Manuf. Technol. 77, 689–703. DOI: 10.1007/s00170-014-6460-9
  13. Brunoro Ahumada, C., Quddus, N., Mannan, M.S., 2018. A method for facility layout optimisation including stochastic risk assessment. Process Saf. Environ. Prot. 117, 616–628. DOI: 10.1016/j.psep.2018.06.004
  14. de Lira-Flores, J.A., López-Molina, A., Gutiérrez-Antonio, C., Vázquez-Román, R., 2019. Optimal plant layout considering the safety instrumented system design for hazardous equipment. Process Saf. Environ. Prot. 124, 97–120. DOI: 10.1016/j.psep.2019.01.021
  15. Derakhshan Asl, A., Wong, K.Y., 2017. Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. J. Intell. Manuf. 28, 1317–1336. DOI: 10.1007/s10845-015-1053-5
  16. Drira, A., Pierreval, H., Hajri-Gabouj, S., 2007. Facility layout problems: A survey. Annu. Rev. Control 31, 255–267. DOI: 10.1016/j.arcontrol.2007.04.001
  17. Duan, S., Kang, L., 2022. An Enhanced Multiobjective Double Row Layout Model considering the Machine Breakdowns. Comput. Intell. Neurosci. 2022. DOI: 10.1155/2022/6289609
  18. Emami, S., Ali S, N., 2013. Managing a new multi-objective model for the dynamic facility layout problem. Int. J. Adv. Manuf. Technol. 68, 2215–2228.
  19. Erik, A., Kuvvetli, Y., 2021. Integration of material handling devices assignment and facility layout problems. J. Manuf. Syst. 58, 59–74. DOI: 10.1016/j.jmsy.2020.11.015
  20. Esmikhani, S., Kazemipoor, H., Sobhani, F.M., Molana, S.M.H., 2022. Solving fuzzy robust facility layout problem equipped with cranes using MPS algorithm and modified NSGA-II. Expert Syst. Appl. 210, 118402. DOI: 10.1016/j.eswa.2022.118402
  21. Ferreira, W. de P., Armellini, F., De Santa-Eulalia, L.A., 2020. Simulation in industry 4.0: A state-of-the-art review. Comput. Ind. Eng. 149, 106868. DOI: 10.1016/j.cie.2020.106868
  22. Flores-Siguenza, P., Siguenza-Guzman, Lorena Lema, F., Tigre, F., Vanegas, P., Aviles-González, J., 2022. A Systematic Literature Review of Facility Layout Problems and Resilience Factors in the Industry. pp. 252–264.
  23. Garbie, I., 2014. Performance analysis and measurement of reconfigurable manufacturing systems. J. Manuf. Technol. Manag. 25, 934–957. DOI: 10.1108/JMTM-07-2011-0070
  24. Ghosh, T., Doloi, B., Dan, P.K., 2016. Applying soft-computing techniques in solving dynamic multi-objective layout problems in cellular manufacturing system. Int. J. Adv. Manuf. Technol. 86, 237–257. DOI: 10.1007/s00170-015-8070-6
  25. Golmohammadi, A.-M., Honarvar, M., Hosseini-Nasab, H., Tavakkoli-MOghaddam, R., 2018. Machine Reliability in a Dynamic Cellular Manufacturing System: A Comprehensive Approach to a Cell Layout Problem. Int. J. Ind. Eng. Prod. Res. 29, 175–196. DOI: 10.22068/ijiepr.29.2.175
  26. Golmohammadi, A.M., Honarvar, M., Tavakkoli-Moghaddam, R., Hosseini-Nasab, H., 2021a. A novel cell layout problem with reliability and stochastic failures. Int. J. Supply Oper. Manag. 8, 165–175. DOI: 10.22034/IJSOM.2021.2.4
  27. Golmohammadi, A.M., Rasay, H., Akhoundpour Amiri, Z., Solgi, M., Balajeh, N., 2021b. Soft Computing Methodology to Optimize the Integrated Dynamic Models of Cellular Manufacturing Systems in a Robust Environment. Math. Probl. Eng. 2021. DOI: 10.1155/2021/3040391
  28. Gong, J., Zhang, Z., Liu, J., Guan, C., Liu, S., 2021. Hybrid algorithm of harmony search for dynamic parallel row ordering problem. J. Manuf. Syst. 58, 159–175. DOI: 10.1016/j.jmsy.2020.11.014
  29. Guan, C., Zhang, Z., Zhu, L., Liu, S., 2022. Mathematical formulation and a hybrid evolution algorithm for solving an extended row facility layout problem of a dynamic manufacturing system. Robot. Comput. Integr. Manuf. 78, 102379. DOI: 10.1016/j.rcim.2022.102379
  30. Halawa, F., Madathil, S.C., Gittler, A., Khasawneh, M.T., 2020. Advancing evidence-based healthcare facility design: a systematic literature review. Health Care Manag. Sci. 23, 453–480. DOI: 10.1007/s10729-020-09506-4
  31. Heragu, S.S., 2006. Facilities Design Second Edition, 2nd ed. iUniverse, Bloomington, Indiana.
  32. Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B., 2018. Classification of facility layout problems: a review study. Int. J. Adv. Manuf. Technol. 94, 957–977. DOI: 10.1007/s00170-017-0895-8
  33. Hunagund, I.B., Pillai, V.M., Kempaiah, U.N., 2022. A survey on discrete space and continuous space facility layout problems. J. Facil. Manag. 20, 235. DOI: 10.1108/JFM-02-2021-0019
  34. Hunagund, I.B., Pillai, V.M., Kempaiah, U.N., 2020. Design of robust layout for unequal area dynamic facility layout problems with flexible bays structure. J. Facil. Manag. 18, 361–392. DOI: 10.1108/JFM-04-2020-0028
  35. Hunagund, I.B., Pillai, V.M., Kempaiah, U.N., 2018. A simulated annealing algorithm for unequal area dynamic facility layout problems with flexible bay structure. Int. J. Ind. Eng. Comput. 9, 307–330. DOI: 10.5267/j.ijiec.2017.8.004
  36. Izadinia, N., Eshghi, K., 2016. A robust mathematical model and ACO solution for multi-floor discrete layout problem with uncertain locations and demands. Comput. Ind. Eng. 96, 237–248. DOI: 10.1016/j.cie.2016.02.026
  37. Izadinia, N., Eshghi, K., Salmani, M.H., 2014. A robust model for multi-floor layout problem. Comput. Ind. Eng. 78, 127–134. DOI: 10.1016/j.cie.2014.09.023
  38. Khajemahalle, L., Emami, S., Keshteli, R.N., 2021. A hybrid nested partitions and simulated annealing algorithm for dynamic facility layout problem: A robust optimization approach. INFOR 59, 74–101. DOI: 10.1080/03155986.2020.1788328
  39. Kheirkhah, A., Navidi, H., Messi Bidgoli, M., 2015. Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Trans. Eng. Manag. 62, 396–410. DOI: 10.1109/TEM.2015.2437195
  40. Kheirkhah, A.S., Bidgoli, M.M., 2016. Dynamic facility layout problem under competitive environment: a new formulation and some meta-heuristic solution methods. Prod. Eng. 10, 615–632. DOI: 10.1007/s11740-016-0703-6
  41. Kokkas, A., Vosniakos, G.C., 2019. An Augmented Reality approach to factory layout design embedding operation simulation. Int. J. Interact. Des. Manuf. 13, 1061–1071. DOI: 10.1007/s12008-019-00567-6
  42. Kovács, G., Kot, S., 2017. Facility layout redesign for efficiency improvement and cost reduction. J. Appl. Math. Comput. Mech. 16, 63–74. DOI: 10.17512/jamcm.2017.1.06
  43. Kulturel-Konak, S., 2007. Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. J. Intell. Manuf. 18, 273–284. DOI: 10.1007/s10845-007-0020-1
  44. Lamba, K., Kumar, R., Mishra, S., Rajput, S., 2020. Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic. Ann. Oper. Res. 290, 5–26. DOI: 10.1007/s10479-019-03340-w
  45. Lan, S., Zhao, J., 2010. Facilities layout optimization method combining human factors and SLP. Proc. - 3rd Int. Conf. Inf. Manag. Innov. Manag. Ind. Eng. ICIII 2010 1, 608–611. DOI: 10.1109/ICIII.2010.151
  46. Li, Jinying, Tan, X., Li, Jinchao, 2018. Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Math. Probl. Eng. 2018. DOI: 10.1155/2018/6040561
  47. Mohammadi, M., Forghani, K., 2016. Designing cellular manufacturing systems considering S-shaped layout. Comput. Ind. Eng. 98, 221–236. DOI: 10.1016/j.cie.2016.05.041
  48. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P., 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6.
  49. Moslemipour, G., 2018. A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands. J. Ind. Eng. Int. 14, 429–442. DOI: 10.1007/s40092-017-0222-x
  50. Moslemipour, G., Lee, T.S., Loong, Y.T., 2017. Performance Analysis of Intelligent Robust Facility Layout Design. Chinese J. Mech. Eng. (English Ed. 30, 407–418. DOI: 10.1007/s10033-017-0073-9
  51. Moslemipour, G., Lee, T.S., Rilling, D., 2012. A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 60, 11–27. DOI: 10.1007/s00170-011-3614-x
  52. Murcia, N., Cardin, O., Mohafid, A., Senkel, M.P., 2021. Health-related parameters for evaluation methodologies of human operators in industry: A systematic literature review. Sustain. 13. DOI: 10.3390/su132313387
  53. Neghabi, H., Eshghi, K., Salmani, M.H., 2014. A new model for robust facility layout problem. Inf. Sci. (Ny). 278, 498–509. DOI: 10.1016/j.ins.2014.03.067
  54. Nematian, J., 2014. A robust single row facility layout problem with fuzzy random variables. Int. J. Adv. Manuf. Technol. 72, 255–267. DOI: 10.1007/s00170-013-5564-y
  55. Nenzhelele, T., Trimble, J.A., Swanepoel, J.A., Kanakana-Katumba, M.G., 2023. MCDM Model for Evaluating and Selecting the Optimal Facility Layout Design: A Case Study on Railcar Manufacturing. Processes 11. DOI: 10.3390/pr11030869
  56. Palubeckis, G., Ostreika, A., Platužienė, J., 2022. A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem. Mathematics 10. DOI: 10.3390/math10132174
  57. Pattanaik, L.N., Sharma, B.P., 2009. Implementing lean manufacturing with cellular layout: A case study. Int. J. Adv. Manuf. Technol. 42, 772–779. DOI: 10.1007/s00170-008-1629-8
  58. Pérez-Gosende, P., Mula, J., Diaz-Madroñero, M., 2023a. A conceptual framework for multi-objective facility layout planning by a bottom-up approach. Int. J. Prod. Manag. Eng. 11, 1–16. DOI: 10.4995/ijpme.2023.19006
  59. Pérez-Gosende, P., Mula, J., Díaz-Madroñero, M., 2023b. A bottom-up multi-objective optimisation approach to dynamic facility layout planning. Int. J. Prod. Res. DOI: 10.1080/00207543.2023.2168308
  60. Pérez-Gosende, P., Mula, J., Díaz-Madroñero, M., 2020. Overview of dynamic facility layout planning as a sustainability strategy. Sustain. 12, 13–15. DOI: 10.3390/su12198277
  61. Pourhassan, M.R., Raissi, S., 2017. An integrated simulation-based optimization technique for multi-objective dynamic facility layout problem. J. Ind. Inf. Integr. 8, 49–58. DOI: 10.1016/j.jii.2017.06.001
  62. Pournaderi, N., Ghezavati, V.R., Mozafari, M., 2019. Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Appl. Sci. 1, 1–17. DOI: 10.1007/s42452-019-0865-x
  63. Pourvaziri, H., Pierreval, H., Marian, H., 2021. Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. Eur. J. Oper. Res. 290, 499–513. DOI: 10.1016/j.ejor.2020.08.012
  64. Qin, W., Huang, G.Q., 2009. A two-level genetic algorithm for scheduling in assembly islands with fixed-position layouts. Glob. Perspect. Compet. Enterp. Econ. Ecol. - Proc. 16th ISPE Int. Conf. Concurr. Eng. 17–28. DOI: 10.1007/978-1-84882-762-2_2
  65. Raghavan, V.A., Yoon, S., Srihari, K., 2014. Lean transformation in a high mix low volume electronics assembly environment. Int. J. Lean Six Sigma 5, 342–360. DOI: 10.1108/IJLSS-07-2013-0042
  66. Riaño, H.B., Escobar, J.W., Linfati, R., Ortiz-Araya, V., 2022. Disciplinary Categorization of the Cattle Supply Chain—A Review and Bibliometric Analysis. Sustain. 14. DOI: 10.3390/su142114275
  67. Rifai, A.P., Windras Mara, S.T., Ridho, H., Norcahyo, R., 2022. The double row layout problem with safety consideration: a two-stage variable neighborhood search approach. J. Ind. Prod. Eng. 39, 181–195. DOI: 10.1080/21681015.2021.1968964
  68. Sakhaii, M., Tavakkoli-Moghaddam, R., Bagheri, M., Vatani, B., 2013. A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Appl. Math. Model. 40, 169–191. DOI: 10.1016/j.apm.2015.05.005
  69. Salimpour, S., Pourvaziri, H., Azab, A., 2021. Semi-robust layout design for cellular manufacturing in a dynamic environment. Comput. Oper. Res. 133, 105367. DOI: 10.1016/j.cor.2021.105367
  70. Salmani, M.H., Eshghi, K., Neghabi, H., 2015. A bi-objective MIP model for facility layout problem in uncertain environment. Int. J. Adv. Manuf. Technol. 81, 1563–1575. DOI: 10.1007/s00170-015-7290-0
  71. Seyed, M.G., Rahmani, D., Moslemipour, G., 2020. Routing flexibility for unequal-area stochastic dynamic facility layout problem in flexible manufacturing systems. Int. J. Ind. Eng. Prod. Res. 31, 269–285. DOI: 10.22068/ijiepr.31.2.269
  72. Sotamba, L.M., Peña, M., Siguenza-Guzma, L., 2024. Driver Analysis to Solve Dynamic Facility Layout Problems: A Literature Review, in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems. pp. 242–249.
  73. Stephens, M.P., Meyers, F.E., 2013. Manufacturing Facilities Design and Material Handling. Purdue University Press.
  74. Suhardi, B., Juwita, E., Astuti, R.D., 2019. Facility layout improvement in sewing department with Systematic Layout planning and ergonomics approach. Cogent Eng. 6. DOI: 10.1080/23311916.2019.1597412
  75. Sule, D.R., 1988. Manufacturing Facilities Location, Planning, and Design. PWS, United States USA.
  76. Sun, X., Lai, L.F., Chou, P., Chen, L.R., Wu, C.C., 2018. On GPU implementation of the island model genetic algorithm for solving the unequal area facility layout problem. Appl. Sci. 8. DOI: 10.3390/app8091604
  77. Targhi, N.S., Sabzehparvar, M., Ebrahimnezhad, S., 2019. A Mathematical Model for Robust Facility Layout Problem in 3D Space with Possibility of Floors. Proc. 2019 15th Iran Int. Ind. Eng. Conf. IIIEC 2019 158–164. DOI: 10.1109/IIIEC.2019.8720721
  78. Tarigan, U., Sinulingga, S., Sutarman, Sembiring, M.T., 2019. Development of Multi-Objective Models in Zone-Based Dynamic Layout: Literature Review. IOP Conf. Ser. Mater. Sci. Eng. 505. DOI: 10.1088/1757-899X/505/1/012130
  79. Tayal, A., Solanki, A., Singh, S.P., 2020. Integrated frame work for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic and data envelopment analysis. Sustain. Cities Soc. 62, 102383. DOI: 10.1016/j.scs.2020.102383
  80. Templier, M., Paré, G., 2015. A framework for guiding and evaluating literature reviews. Commun. Assoc. Inf. Syst. 37, 112–137. DOI: 10.17705/1cais.03706
  81. Ulutas, B., Islier, A.A., 2015. Dynamic facility layout problem in footwear industry. J. Manuf. Syst. 36, 55–61. DOI: 10.1016/j.jmsy.2015.03.004
  82. Vieira, E.S., Gomes, J.A.N.F., 2009. A comparison of Scopus and Web of science for a typical university. Scientometrics 81, 587–600. DOI: 10.1007/s11192-009-2178-0
  83. Vitayasak, S., Pongcharoen, P., 2018. Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Syst. Appl. 98, 129–152. DOI: 10.1016/j.eswa.2018.01.005
  84. Vitayasak, S., Pongcharoen, P., Hicks, C., 2017. A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. Int. J. Prod. Econ. 190, 146–157. DOI: 10.1016/j.ijpe.2016.03.019
  85. Wan, X., Zuo, X.Q., Zhao, X.C., 2021. A surrogate model-based hybrid approach for stochastic robust double row layout problem. Mathematics 9. DOI: 10.3390/math9151711
  86. Wei, X., Yuan, S., Ye, Y., 2019. Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Prod. Manuf. Res. 7, 109–124. DOI: 10.1080/21693277.2019.1602486
  87. Wohlin, C., Mendes, E., Felizardo, K.R., Kalinowski, M., 2020. Guidelines for the search strategy to update systematic literature reviews in software engineering. Inf. Softw. Technol. 127, 106366. DOI: 10.1016/j.infsof.2020.106366
  88. Xiao, Y., Zhang, Y., Kulturel-Konak, S., Konak, A., Xu, Y., Zhou, S., 2021. The aperiodic facility layout problem with time-varying demands and an optimal master-slave solution approach. Int. J. Prod. Res. 59, 5216–5235. DOI: 10.1080/00207543.2020.1775909
  89. Zha, S., Guo, Y., Huang, S., Wang, F., Huang, X., 2017. Robust Facility Layout Design under Uncertain Product Demands. Procedia CIRP 63, 354–359. DOI: 10.1016/j.procir.2017.03.079
  90. Zhang, Z., Gong, J., Liu, J., Chen, F., 2022a. A fast two-stage hybrid meta-heuristic algorithm for robust corridor allocation problem. Adv. Eng. Informatics 53, 101700. DOI: 10.1016/j.aei.2022.101700
  91. Zhang, Z., Gong, J., Liu, J., Chen, F., 2022b. A fast two-stage hybrid meta-heuristic algorithm for robust corridor allocation problem. Adv. Eng. Informatics 53, 101700. DOI: 10.1016/j.aei.2022.101700
  92. Zhu, J., Liu, W., 2020. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123, 321–335. DOI: 10.1007/s11192-020-03387-8
DOI: https://doi.org/10.30657/pea.2025.31.3 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 27 - 40
Submitted on: Aug 26, 2024
Accepted on: Nov 20, 2024
Published on: Feb 28, 2025
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wildanul Isnaini, Nur Aini Masruroh, IGB Budi Dharma, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.