Babchenko, L. A., Gulyarenko, A. A., 2020. Data control for reliability of agricultural tractors. Journal of Machinery Manufacture and Reliability, 49(10), 900–906. DOI: 10.3103/S1052618820100039
Bukhari, H. J., 2017. Robust design optimization using the price of robustness, robust least squares and regularization methods. International Journal for Simulation and Multidisciplinary Design Optimization, 8, A13. DOI: 10.1051/smdo/2017007
Cassady, C. R., Pohl, E. A., 1982. Optimal maintenance models for systems subject to failure - a review. Naval Research Logistics, 29(2), 419–446. DOI: 10.1002/nav.3800280104
Che, C., Wang, H., Ni, X., Lin, R., 2021. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis. Measurement, 173, 108655. DOI: 10.1016/j.measurement.2020.108655
Chumakov, P. V., Martynov, A. V., Kolomeychenko, A. V., Hasan, I. H., Kolomeychenko, A. S., 2020. Evaluation of technical condition of round‑gear hydraulic pumps of tractor‑mounted hydraulic systems. Engineering Technologies and Systems, 30(3), 426–447. DOI: 10.15507/2658-4123.030.202003.426-447
Durczak, K., Selech, J., Ekielski, A., Żelaziński, T., Waleński, M., Witaszek, K., 2022. Using the Kaplan–Meier Estimator to Assess the Reliability of Agricultural Machinery. Agronomy, 12(6), 1364. DOI: 10.3390/agronomy12061364
Galiev, F. R., Starovoytov, S. I., Sidorov, S. A., Mironova, A., 2020. Field investigation of component failures of farm machinery in small farming. Open Agriculture, 9(1), 20220292. DOI: 10.1515/page-2022-0292
Gulyarenko, A. A., Bembenek, M. J., Iskakov, R. M., Shaimuratova, E. S., Gulyarenko, A. V., 2024. Development of a tractor reliability optimization model: A review of research and rationale for the components. Material and Mechanical Engineering Technology, (3). DOI: 10.52209/2706-977X_2024_3_54
Gulyarenko, A. A., Ganiev, I. G., (2017. Kolichestvennaja ocenka vesomosti faktorov, vlijajushhih na nadjozhnost’ traktorov v jekspluatacii. Vestnik Nacional’noj Inzhenernoj Akademii Respubliki Kazakhstan, 1. 63. 121–127. https://sites.google.com/view/gulyarenko/homepage/science?authuser=0
Makkar, R., Aalam, B. E., Jain, M., & Ashwani., 2020. A review of cost analysis study of farm tractor. International Journal of Current Microbiology and Applied Sciences, 9(3), 2914–2921. DOI: 10.20546/ijcmas. 2020.903.335
Najafi, B., & Torabi Dastgerdouei, S., 2015. Optimization of machinery use on farms with emphasis on timeliness costs. Journal of Agricultural Science and Technology, 17(3), 533–541. https://jast.modares.ac.ir/article-23-3458-en.html
Shepelev, S. D., Pyataev, M. V., Shalonkina, E. V., 2022. Theoretical and experimental studies of the tractive resistance of the sowing complex for the no‑till technology. In Proceedings of the 8th International Conference on Industrial Engineering (ICIE 2022), 341–350. Springer. DOI:10.1007/978-3-031-14125-6_34
Sherif, Y. S., Smith, M. L., 1981. Optimal maintenance models for systems subject to failure: A review. Naval Research Logistics Quarterly, 28(1), 47–74. DOI: 10.1002/nav.3800280104
Shykhmat, A. O., Veres, Z. E., 2024. Agriculture vehicles predictive maintenance with telemetry, maintenance history and geospatial data. ACPS, 9(2), 134–139. DOI:10.23939/acps2024.02.134
Siddique, M.A.A. et al., 2022. Development of the Reliability Assessment Process of the Hydraulic Pump for a 78 kW Tractor during Major Agricultural Operations. Agriculture, 12(10), 1609. DOI: 10.3390/agriculture12101609
Sun, J., Zhang, Y., Chen, H., Qiao, J., 2023. Optimization model and application for agricultural machinery systems based on timeliness losses of multiple operations. Agriculture, 13(10), Article 1969. DOI:10.3390/agriculture13101969
Susarev, S., Orlov, S., Bizyukova, E., Uchaikin, R., 2022. Models for predictive maintenance of robotic agricultural vehicles. In A. G. Kravets et al. (Eds.), Cyber-Physical Systems: Intelligent Models and Algorithms (pp. 123–136). Springer. DOI: 10.1007/978-3-030-95116-0_13
Zhao, Z. L., Yu, H. J., Cheng, F., 2022. An analysis of factors affecting agricultural tractors’ reliability using random survival forests based on warranty data. IEEE Access, 10. DOI: 10.1109/ACCESS.2022.3172348