Have a personal or library account? Click to login
Influence of high cutting speed turning on surface and corrosion properties of 08Ch18N10T austenitic stainless steel from the perspective of operational safety of primary circuit of a nuclear power plant Cover

Influence of high cutting speed turning on surface and corrosion properties of 08Ch18N10T austenitic stainless steel from the perspective of operational safety of primary circuit of a nuclear power plant

Open Access
|Sep 2025

References

  1. Acharyya, S. G., Khandelwal, A., Kain, V., Kumar, A., Samajdar, I., 2012. Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance. Materials Characterization, 72, 68-76, DOI: 10.1016/j.matchar.2012.07.008
  2. Alyousif, O. M., Nishimura, R., 2008. Stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions. Corrosion Science, 50, 2353-2359, DOI: 10.1016/j.corsci.2008.04.024
  3. Alyousif, O. M., Nishimura, R., 2010. A hydrogen embrittlement mechanism for sensitized types 304, 316 and 310 austenitic stainless steels in boiling saturated magnesium chloride solutions. Corrosion Science, 52, 7-13, DOI: 10.1016/j.corsci.2009.07.016
  4. ASTM G108-94, 2015. Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels. ASTM International: West Conshohocken, PA, USA. Available online:www.astm.org.
  5. Beňo, J., Maňková, I., 2004. Technological and material factors of machining, first ed. Elfa Kosice, Košice, Slovakia.
  6. Cepova, L., Cep, R., Chalko, L., Dvorackova, S., Trochta, M., Rucki, M., Beranek, L., Mizera, O., Chyshkala, V., 2023. The Effect of Cutting Tool Geometry on Surface Integrity: A Case Study of CBN Tools and the Inner Surface of Bearing Rings. Applied Sciences, 13, 3543, 1-14, DOI: 10.3390/app13063543
  7. Cissé, S., Laffont, L., Tanguy, B., Lafont, M.-Ch., Andrieu, E., 2012. Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water. Corrosion Science, 26, 209-216, DOI: 10.1016/j.corsci.2011.12.007
  8. Davim, J. P., 2010. Surface Integrity in Machining. Springer-Verlag London Limited, London-United Kingdom
  9. Drobný, P., Čaplovič, Ľ., Sahul, M., Babincová, P., Koula, V., 2020. Acoustic emission analysis of hard coatings cracking during indentation test. IOP Conference Series: Materials Science and Engineering, 726, 012004, 1-8, DOI: 10.1088/1757-899X/726/1/012004
  10. Du, D., Chen, K., Lu, H., Zhang, L., Shi, X., Xu, X., 2016. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water. Corrosion Science, 110, 134-142, DOI: 10.1016/j.corsci.2016.04.035
  11. Fernández-Abia, A. I., Barreiro, J., López de Lacalle, L. N., Martínez, S., 2011. Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 57, 61-71, DOI: 10.1007/s00170-011-3267-9
  12. Fukaya, Y., Tatsuoka, T., Akashi, M., 2017. Effect of Sulfate addition on Stress Corrosion Cracking Initiation of Sensitized Type 304 Stainless Steels in High Temperature Water. Corrosion Engineering, 66, 173-179, DOI: 10.3323/jcorr.66.173
  13. Ghosh, S., Kain, V., 2010. Microstructural changes in AISI 304L stainless steel due to surface machining: Effect on its susceptibility to chloride stress corrosion cracking. Journal of Nuclear Materials, 403, 62-67, DOI: 10.1016/j.jnucmat.2010.05.028
  14. Ghosh, S., Rana, V. P. S., Kain, V., Mittal, V., Baveja, S. K., 2011. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Materials and Design, 32, 3823-3831, DOI: 10.1016/j.matdes.2011.03.012
  15. Hassan, S., Khan, S. A., Naveed, R., Saleem, M. Q., Mufti, N. A., Farooq, M. U., 2023. Investigation on tool wear mechanisms and machining tribology of hardened DC53 steel through modified CBN tooling geometry in hard turning. The International Journal of Advanced Manufacturing Technology, 127, 547-564, DOI: 10.1007/s00170-023-11528-5
  16. Hassani, A., Habibolahzadeh, A., Javadi, A. H., Hosseini, S. M., 2012. Effect of Strain Rate on Stress Corrosion Cracking of 316L Austenitic Stainless Steel in Boiling MgCl2 Environment. Journal of Materials Engineering and Performance, 22, 1783-1789, DOI: 10.1007/s11665-012-0461-3
  17. Hou, Z., Xiu, S., Sun, C., Yao, Y., 2022. Effect of machining-induced surface topography on corrosion behaviors of 304 austenitic stainless steel in pre-stress grinding. The International Journal of Advanced Manufacturing Technology, 122, 2971-2985, DOI: 10.1007/s00170-022-10083-9
  18. Chang, L., Burke, M. G., Scenini, F., 2018. Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water. Corrosion Science, 138, 54-65, DOI: 10.1016/j.corsci.2018.04.003
  19. Chang, L., Burke, M. G., Scenini, F., 2019. Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water. Scripta Materialia, 164, 1-5, DOI: 10.1016/j.scriptamat.2019.01.032
  20. Chang, L., Volpe, L., Wang, Y. L., Burke, M. G., Maurotto, A., Tice, D., Lozano-Perez, S., Scenini, F., 2019. Effect of machining on stress corrosion crack initiation in warm-forged type 304L stainless steel in high temperature water. Acta Materialia, 165, 203-214, DOI: 10.1016/j.actamat.2018.11.046
  21. Kuang, W., Wu, X., Han, E-H., 2010. The oxidation behaviour of 304 stainless steel in oxygenated high temperature water. Corrosion Science, 52, 12, 4081-4087, DOI: 10.1016/j.corsci.2010.09.001
  22. Kuang, W., Wu, X., Han, E-H., 2013. Influence of dissolved oxygen concentration on the oxide film formed on Alloy 690 in high temperature water. Corrosion Science, 69, 197-204, DOI: 10.1016/j.corsci.2012.12.003
  23. Kudláč, M., Dománková, Bártová, K., Gavalec, M., Slnek, D., 2024. Influence of final turning on SCC susceptibility and corrosion properties of austenitic stainless steel 08Ch18N10T. Journal of Physics: Conference Series, 2931, 1, 1-10, DOI: 10.1088/1742-6596/2931/1/012014
  24. Kudláč, M., Dománková, M., Brziak, P., Košínová, A., Gavalec, M., Bártová, K., 2024. Analysis of stress corrosion cracking of heterogeneous welded joints in simulated primary water environment. Applied Engineering Letters, 9, 2, 76-84, DOI: 10.46793/aeletters.2024.9.2.2
  25. Kumar, K., Bhadauria, S. S., Singh, A. P., 2021. Effect of Strain Loading on Stress Corrosion Cracking Susceptibility of 316L Stainless Steel in Boiling MgCl2 Solution. Journal of Bio- and Tribo-Corrosion, 7, 123, 1-10, DOI: 10.1007/s40735-021-00561-0
  26. Kumar, P., Chauhan, S. R., Pruncu, C. I., Gupta, M. K., Pimenov, D. Y., Mia, M., Gill, H. S., 2019. Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation.Materials, 12, 177, 1-20, DOI: 10.3390/ma12010177
  27. Kumar, S. P., Acharyya, S. G., 2019, Controlling chloride induced stress corrosion cracking of AISI 316L stainless steel by application of buffing. Materials Today: Proceedings, 15, 138-144, DOI: 10.1016/j.matpr.2019.05.036
  28. Kumar, S. P., Acharyya, S. G., Rao, S. V. R., Kapoor, K., 2018. Surface buffing and its effect on chloride induced SCC of 304L austenitic stainless steel. IOP Conference Series: Materials Science and Engineering, 314, 1-7, DOI: 10.1088/1757-899X/314/1/012002
  29. Liu, Z., Zhang, W., 2024. Comprehensive Impact of Machined Surface Integrity on Stress Corrosion Cracking Initiation in 316 Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 34, 4230-4239, DOI: 10.1007/s11665-024-09369-8
  30. Lyon, K. N., Marrow, T. J., Lyon, S. B., 2015. Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. Journal of Materials Processing Technology, 218, 32-37, DOI: 10.1016/j.jmatprotec.2014.11.038
  31. Majidi, A. P., Streicher, M. A., 1984. The Effect of Methods of Cutting and Grinding on Sensitization in Surface Layers on AISI 304 Stainless Steel. Corrosion, 40, 9, 445-458, DOI: 10.5006/1.3577915
  32. Matal, O., Šen, H., 2011. Nuclear facilities and their safety.Cerm, Brno-Czech republic
  33. Mayuzumi, M., Ishiyama, N., Mizutani, Y., Tani, J., Kako, K., 2008. Incubation Time of Stress Corrosion Cracking for Type 316L and Type 316 Stainless Steels by CBB Method in High Temperature Water. Corrosion Engineering, 57, 5, DOI: 10.3323/jcorr.57.230
  34. Peng, L., Zhang, Z., Tan, J., Wu, X., Han, E.-H., Ke, W., 2022. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water. Corrosion Science, 198, 110157, 1-14, DOI: 10.1016/j.corsci.2022.110157
  35. Rajaguru, J., Arunachalam, N., 2018. Investigation on machining induced surface and subsurface modifications on the stress corrosion crack growth behaviour of super duplex stainless steel. Corrosion Science, 141, 230-242, DOI: 10.1016/j.corsci.2018.07.012
  36. Rajaguru, J., Arunachalam, N., 2020. A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel. Journal of Materials Processing Technology, 276, 116417, 1-14, DOI: 10.1016/j.jmatprotec.2019.116417
  37. Rajaguru, J., Arunachalam, N., 2021. Effect of machined surface integrity on the stress corrosion cracking behaviour of super duplex stainless steel. Engineering Failure Analysis, 125, 105411, 1-11, DOI: 10.1016/j.engfailanal.2021.105411
  38. Rajasekaran, R., Lakshminarayanan, A. K., Vasudevan, M., Vasantha Raja, P., 2022. Stress Corrosion Cracking Susceptibility of 316LN Grade Stainless Steel Weld Joint in Boiling Magnesium Chloride Hexahydrate Environment. Metals and Materials International, 28, 2778-2797, DOI: 10.1007/s12540-021-01162-9
  39. Reinemann, S., Rosemann, P., Babutzka, M., Lehmann, J., Burkert, A., 2019. Influence of grinding parameters on the corrosion behavior of austenitic stainless steel. Materials and Corrosion, 70, 10, 1776-1787, DOI: 10.1002/maco.201910874
  40. Rhouma, A. B., Braham, C., Fitzpatrick, M. E., Lédion, J., Sidhom, H., 2001. Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels. Journal of Materials Engineering and Performance, 10, 5, 507-514, DOI: 10.1361/105994901770344638
  41. Rhouma, A. B., Sidhom, N., Makhlouf, K., Sidhom, H., Braham, C., Gonzalez, G., 2019. Effect of machining processes on the residual stress distribution heterogeneities and their consequences on the stress corrosion cracking resistance of AISI 316L SS in chloride medium. The International Journal of Advanced Manufacturing Technology, 105, 1699-1711, DOI: 10.1007/s00170-019-04410-w
  42. Singh, R., Chattoraj, I. Kumar, A., Ravikumar, B., Dey, P. K., 2003. The effects of cold working on sensitization and intergranular corrosion behavior of AISI 304 stainless steel. Metallurgical and Materials Transactions A, 34A, 2441-2447, DOI: 10.1007/s11661-003-0004-5
  43. Sinjlawi, A., Chen, J., Kim, H.-S., Lee, H. B., Jang, Ch., Lee, S., 2020. Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen. Nuclear Engineering and Technology, 52, 2552-2564, DOI: 10.1016/j.net.2020.04.023
  44. Soltangharaei, V., Hill, J. W., Ai, L., Anay, R., Greer, B., Bayat, M., Ziehl, P., 2020. Acoustic emission technique to identify stress corrosion cracking damage. Structural Engineering and Mechanics, 75, 6, 723-736, DOI: 10.12989/sem.2020.75.6.723
  45. Suma, M. J., Mahadevan, S., Toppo, A. Albert, S. K., Kumar, S. A., 2019. Effect of cutting process on the stress corrosion susceptibility of AISI 304L stainless steel. Materials and Corrosion, 71, 1081-1090, DOI: 10.1002/maco.201911424
  46. Terachi, T., Yamada, T., Miyamoto, T., Arioka, K., Fukuya, K., 2008. Corrosion Behavior of Stainless Steels in Simulated PWR Primary Water — Effect of Chromium Content in Alloys and Dissolved Hydrogen. Journal of Nuclear Science and Technology, 45, 10, 975-984, DOI: 10.1080/18811248.2008.9711883
  47. Turnbull, A., Mingard, K., Lord, J. D., Roebuck, B., Tice, D. R., Mottershead, K. J. Fairweather, N. D., Bradbury, A. K., 2011. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corrosion Science, 53, 3398-3415, DOI: 10.1016/j.corsci.2011.06.020
  48. Wang, S., Hu, Y., Fang, K., Zhang, W., Wang, X., 2017. Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water. Corrosion Science, 126, 104-120, DOI: 10.1016/j.corsci.2017.06.019
  49. Wu, H., Li, Ch., Fang, K., Xue, F., Zhang, G., Luo, K., Wang, L., 2018. Effect of machining on the stress corrosion cracking behavior in boiling magnesium chloride solution of austenitic stainless steel. Materials and Corrosion, 69, 519-526, DOI: 10.1002/maco.201709794
  50. Wu, H., Li, Ch., Fang, K., Zhang, W., Xue, F., Zhang, G., Wang, X., 2018. Effect of residual stress on the stress corrosion cracking in boiling magnesium chloride solution of austenite stainless steel. Materials and Corrosion, 69, 1572-1583, DOI: 10.1002/maco.201810201
  51. Yasir, M., Danish, M., Mia, M., Gupta, M. K., Sarikaya, M., 2021. Investigation into the surface quality and stress corrosion cracking resistance of AISI 316L stainless steel via precision end-milling operation. The International Journal of Advanced Manufacturing Technology, 112, 1065-1076, DOI: 10.1007/s00170-020-06413-4
  52. Yan, H., Wang, J., Zhang, Z., Okonkwo, B. O., 2022. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water. Journal of Materials Science & Technology, 122, 219-230, DOI: 10.1016/j.jmst.2021.04.081
  53. Zhang, L., Wang, J., 2014. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment. Journal of Nuclear Materials, 446, 15-26, DOI: 10.1016/j.jnucmat.2013.11.027
  54. Zhang, W., Fang, K., Hu, Y., Wang, S., Wang, X., 2016. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corrosion Science, 108, 173-184, DOI: 10.1016/j.corsci.2016.03.008
  55. Zhang, W., Li, Y., Dong, H., Yang, Ch., Jiang, X., Lou, D., Xue, H., Fang, K., Wang, X., 2023. Correlation between machining-induced surface alterations and stress corrosion cracking susceptibility of austenitic stainless steels. Journal of Materials Research and Technology, 26, 5076-5094. DOI: 10.1016/j.jmrt.2023.08.239
  56. Zhang, W., Wu, H., Wang, S., Hu, Y., Fang, K., Wang, X., 2020. Investigation of Stress Corrosion Cracking Initiation in Machined 304 Austenitic Stainless Steel in Magnesium Chloride Environment. Journal of Materials Engineering and Performance, 29, 1, 191-204, DOI: 10.1007/s11665-020-04558-7
  57. Zhang, Y., Xue, H., Li, Y., Wang, X., Jiang, X., Yang, Ch., Fang, K., Zhang, W., Jiang, H., 2022. Effects of Multi-Pass Turning on Stress Corrosion Cracking of AISI 304 Austenitic Stainless Steel. Micromachines, 13, 1745, 1-18, DOI: 10.3390/mi13101745
  58. Zhang, Z., Feng, H., Zhao, W., Li, M., 2020. Application of acoustic emission technology in hydraulic pressure test of nuclear power plant. IOP Conference Series: Earth and Environmental Science, 514, 042039, 1-6, DOI: 10.1088/1755-1315/514/4/042039
  59. Zhong, X., Bali, S. Ch., Shoji, T., 2017. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water. Corrosion Science, 118, 143-157, DOI: 10.1016/j.corsci.2017.02.003
DOI: https://doi.org/10.30657/pea.2025.31.34 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 376 - 385
Submitted on: Apr 15, 2025
Accepted on: Jun 9, 2025
Published on: Sep 26, 2025
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marek Kudláč, Mária Dománková, Katarína Bártová, Ivana Sára Škrobáková, Tomáš Vopát, Matúš Gavalec, Dávid Slnek, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.