Have a personal or library account? Click to login
Multimode approach using Reinforcement Learning and Digital Twin for operating mode management Cover

Multimode approach using Reinforcement Learning and Digital Twin for operating mode management

Open Access
|Feb 2025

References

  1. Kamach, O., Piétrac, L., Niel, É., 2006. Multi-model approach to discrete events systems: Application to operating mode management. Math. Comput. Simul., 70(5–6), 394–407. DOI: 10.1016/j.matcom.2005.11.008.
  2. Ghosh, S., Samanta, G., De La Sen, M., 2021. Multi-Model Approach and Fuzzy Clustering for Mammogram Tumor to Improve Accuracy. Computation, 9(5), 59. DOI: 10.3390/computation9050059.
  3. Elqabli, Z., Chater, Y., Kamach, O., 2022. Operation modes scheduling: a formal framework for identification of the compatible state, 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), IEEE, Tanger, 1-6. DOI: 10.1109/LOGISTIQUA 55056.2022.9938021.
  4. Kamach, O., Chafik, S., Piétrac, L., 2002. Representation of a reactive system with different models. Proc. IEEE Int. Conf. Syst. Man Cybern.,4, 263–267. DOI: 10.1109/icsmc.2002.1173293.
  5. Kamach, O., Chafik, S., Piétrac, L., Niel, É., 2005. Supervisory uniqueness for operating mode systems. IFAC, 16(1). DOI: 10.3182/20050703-6-cz-1902.01443.
  6. Phan, L.T.X., Chakraborty, S., Lee, I., 2009. Timing analysis of mixed time/event-triggered multi-mode systems. Proc. - Real-Time Syst. Symp., 271–280. DOI: 10.1109/RTSS.2009.24.
  7. Phan, L.T.X., Lee, I., Sokolsky, O., 2010. Compositional analysis of multi-mode systems. Proc. - Euromicro Conf. Real-Time Syst., 197–206. DOI: 10.1109/ECRTS.2010.35.
  8. Faraut, G., Piétrac, L., Niel, É., 2009. Formal approach to multimodal control design: Application to mode switching. IEEE Trans. Ind. Informatics, 5(4), 443–453. DOI: 10.1109/TII.2009.2028135.
  9. Faraut, G., Piétrac, L., Niel, É., 2008. Identification of incompatible states in mode switching. IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, 121–128. DOI: 10.1109/ETFA.2008.4638382.
  10. Kamach, O., Niel, É., Piétrac, L., 2007. Repulsive / Attractive Discrete State Space Sets for Switching Management. Studies in Informatics and Control, 16(1), 83.
  11. El ghadouali, A., Kamach, O., Amami, B., 2012. Static approach for switching between different operating modes. 2nd Int. Conf. Commun. Comput. Control Appl. CCCA. DOI: 10.1109/CCCA.2012.6417878.
  12. Kamach, O., 2004. Approche multi-modèle pour les systèmes à événements discrets: application à la gestion des modes de fonctionnement.” Lyon, INSA, France.
  13. Goossens, J., Richard, P., 2013. Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation. ACM Int. Conf. Proceeding Ser., 297–305. DOI: 10.1145/2516821.2516822.
  14. Nandola, N.N., Bhartiya, S., 2008. A multiple model approach for predictive control of nonlinear hybrid systems. J. Process Control, 18(2), 131–148. DOI: 10.1016/j.jprocont.2007.07.003.
  15. Abdallah, I., Gehin, L., Ould Bouamama B., 2018. Event driven Hybrid Bond Graph for Hybrid Renewable Energy Systems part I: Modelling and operating mode management. Int. J. Hydrogen Energy, 22088–22107. DOI: 10.1016/j.ijhydene.2017.10.144.
  16. El ghadouali, A., Kamach, O., Amami, B., 2013. Safe switching of discrete events systems: Application to operating mode management. in Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM), IEEE, 1–7.
  17. Azzabi, O., Ben Njima, C., Messaoud, H., 2017a. Modeling a system with hybrid automata and multi - Models, Int. Conf. Control. Autom. Diagnosis, ICCAD, 87–90. DOI: 10.1109/CADIAG.2017.8075636. Azzabi, O., Ben Njima, C., Messaoud, H., 2017b. New approach of diagnosis with hybrid automata, Int. Conf. Control. Autom. Diagnosis (ICCAD), 298–302. DOI: 10.1109/CADIAG.2017.8075674.
  18. Azzabi, O., Ben Njima, C., Messaoud, H., 2016. Diagnosis of a dynamic hybrid system by hybrid timed automata. Int. Conf. Control. Decis. Inf. Technol (CoDIT), 618–623. DOI: 10.1109/CoDIT.2016.7593633.
  19. Yang, Z., Aoki, T., Tan, Y., 2019. Modeling the required indoor temperature change by hybrid automata for detecting thermal problems. Proc. IEEE Pacific Rim Int. Symp. Dependable Comput. PRDC, vol. 2018-December, 135–144. DOI: 10.1109/PRDC.2018.00024.
  20. Abdallah, I., Gehin, L., Ould Bouamama B., 2017. On-line robust graphical diagnoser for hybrid dynamical systems. Eng. Appl. Artif. Intell., 69, 36–49. DOI: 10.1016/j.engappai.2017.12.002.
  21. Mrabet, W., Ladhari, T., 2013. Towards a multi_agent system for manufacturing reconfiguration, 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 1-6, IEEE.
  22. Dou, C.X., Liu, B., 2014. Hierarchical management and control based on MAS for distribution grid via intelligent mode switching. Int. J. Electr. Power Energy Syst., 54, 352–366. DOI: 10.1016/j.ijepes.2013.07.029.
  23. Borangiu, T., Rəileanu, S., Berger, T., Trentesaux, D., 2015. Switching mode control strategy in manufacturing execution systems. Int. J. Prod. Res., 53(7), 1950–1963. DOI: 10.1080/00207543.2014.935825.
  24. Yu, J., Dou, C., Li, X., 2016. MAS-Based Energy Management Strategies for a Hybrid Energy Generation System. IEEE Trans. Ind. Electron., 63(6), 3756–3764. DOI: 10.1109/TIE.2016.2524411.
  25. Dou, C.X., Wang, W.Q., Hao, D.W., Bin Li, X., 2015. MAS-based solution to energy management strategy of distributed generation system. Int. J. Electr. Power Energy Syst., 69, 354–366. DOI: 10.1016/j.ijepes. 2015.01.026.
  26. An, Y., Wu, N., 2018. Scheduling of crude oil operations for minimizing the usage of simultaneously-charging-and-feeding mode, 15th IEEE Int. Conf. Networking, Sens. Control (ICNSC), 1–6. DOI: 10.1109/ICNSC. 2018.8361347.
  27. An, Y., Wu, N.Q., Hon, C.T., Li, Z.W., 2017. Scheduling of crude oil operations in refinery without sufficient charging tanks using petri nets. Appl. Sci., 7(6). DOI: 10.3390/app7060564.
  28. Outafraout, K., Nait-Sidi-Moh, A., 2017. Modeling and simulation of a multimodal transportation system based on hybrid Petri nets, 14th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE, 413–418.
  29. Ge, Y., Zhu, F., Ling, X., Liu, Q., 2019. Safe Q-Learning Method Based on Constrained Markov Decision Processes. IEEE Access, 7, 165007–165017. DOI: 10.1109/ACCESS.2019.2952651.
  30. Oroojlooy, A., Hajinezhad, D., 2022. A review of cooperative multi-agent deep reinforcement learning. Appl. Intell., 1–81. DOI: 10.1007/s10489-022-04105-y.
  31. Yang, S., Xu, Z., 2022. Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing. Int. J. Prod. Res., 60(16), 4936–4953. DOI: 10.1080/00207543.2021.1943037.
  32. Li, X., Chen, G., Wu, G., Sun, Z., Chen, G., 2023. Research on multi-Agent D2D Communication Resource Allocation Algorithm Based on A2C. Electron.,12(2). DOI: 10.3390/electronics12020360.
DOI: https://doi.org/10.30657/pea.2025.31.11 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 116 - 128
Submitted on: Apr 16, 2024
Accepted on: Nov 8, 2024
Published on: Feb 28, 2025
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zineb Elqabli, Oulaid Kamach, Youness Chater, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.