Have a personal or library account? Click to login
Examining Wind Flow's Impact on Multi-Storey Buildings: A Quest for Quality Improvement Cover

Examining Wind Flow's Impact on Multi-Storey Buildings: A Quest for Quality Improvement

Open Access
|Feb 2024

References

  1. Abdelfatah, N., Elawady, A., Irwin, P., Chowdhury, A. 2020. A study of aerodynamic pressures on elevated houses. Wind and Structures, 31(4), 335–350. DOI: 10.12989/WAS.2020.31.4.335
  2. Blocken, B. 2018. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 11, 821–870. DOI: 10.1007/s12273-018-0459-3
  3. Carrilho da Graça, G., Linden, P. 2016. Ten questions about natural ventilation of non-domestic buildings. Building and Environment, 107, 263-273. DOI: 10.1016/j.buildenv.2016.08.007
  4. Chauhan, B. S., Chakrabarti, A., Ahuja, A. K. 2022. Study of wind loads on rectangular plan tall building under interference condition. Structures, 43, 105-130. DOI: 10.1016/j.istruc.2022.06.041
  5. Chen, G., Hang, J., Chen, L., Lin, Y. 2023. Comparison of uniform and nonuniform surface heating effects on in-canyon airflow and ventilation by CFD simulations and scaled outdoor experiments. Building and Environment, 244, 110744. DOI: 10.1016/j.buildenv.2023.110744
  6. Chen, Y., Tong, Z., Malkawi, A. 2017. Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. DOI: 10.1016/j.buildenv.2017.06.026
  7. Chen, Y., Tong, Z., Wu, W., Samuelson, H., Malkawi, A., Norford, L. 2019. Achieving natural ventilation potential in practice: Control schemes and levels of automation. Applied Energy, 235, 1141-1152. DOI: 10.1016/j.apenergy.2018.11.016
  8. Chu, C. 2023. Assessment of year-round wind-driven ventilation by an integrated ventilation model. Building and Environment, 243, 110710. DOI: 10.1016/j.buildenv.2023.110710
  9. Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A., Dagnew, A. 2016. LES evaluation of wind-induced responses for an isolated and a surrounded tall building. Engineering Structures, 115, 179-195. DOI: 10.1016/j.engstruct.2016.02.026
  10. Feng, C., Gu, M., Zheng, D. 2019. Numerical simulation of wind effects on super high-rise buildings considering wind veering with height based on CFD. Journal of Fluids and Structures, 91, 102715. DOI: 10.1016/j.jfluidstructs.2019.102715
  11. Fontes-Silva, P. H., Loredo-Souza, A. M., Rocha, M. M. 2022. Experimental study in wind tunnel of interference effects on the reduced model of the CAARC building. Latin American Journal of Solids and Structures, 19(2), e430. DOI: 10.1590/1679-78256898
  12. Furdas, Y., Yurkevych, Y., Zhelykh, V., Ulewicz, M. 2023. The Impact of Wind Flow on Multi-storey Buildings: Experimental Studies. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2022. EcoComfort 2022. Lecture Notes in Civil Engineering, vol 290. Springer, Cham. DOI: 10.1007/978-3-031-14141-6_9
  13. Gaur, N., Raj, R. 2021. Aerodynamic mitigation by corner modification on square model under wind loads employing CFD and wind tunnel. Ain Shams Engineering Journal, 13(1), 101521. DOI: 10.1016/j.asej.2021.06.007
  14. Giachetti, A., Bartoli, G., Mannini, C. 2022. Aerodynamics of a tall building equipped with a solid screen close to the façade. Journal of Wind Engineering and Industrial Aerodynamics, 225, 104999. DOI: 10.1016/j.jweia.2022.104999
  15. Gough, H., Sato, T., Halios, C., Grimmond, C., Luo, Z., Barlow, J., Robertson, A., Hoxey, R., Quinn, A. 2018. Effects of variability of local winds on cross ventilation for a simplified building within a full-scale asymmetric array: Overview of the Silsoe field campaign. Journal of Wind Engineering and Industrial Aerodynamics, 175, 408-418. DOI: 10.1016/j.jweia.2018.02.010
  16. Hirose, C., Ikegaya, N., Hagishima, A., Tanimoto, J. 2022. Computational fluid dynamics for cross-ventilated airflow in an urban building. Japan Architectural Review, 6(1), e12312. DOI: 10.1002/2475-8876.12312
  17. Huang, J., Gu, M., Gao, Y. 2021. Blockage effects on aerodynamics of isolated tall buildings under uniform turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104607. DOI: 10.1016/j.jweia.2021.104607
  18. Huang, Y., Ou, G., Fu, J., Zhang, H. 2022. Prediction of mean and RMS wind pressure coefficients for low-rise buildings using deep neural networks. Engineering Structures, 274, 115149. DOI: 10.1016/j.engstruct.2022.115149
  19. Hubová,O.,Franek,M., Véghová,I. 2022.The Wind Tunnel Study of the Influence of Terrain and Surrounding Structures on the Distribution of Wind Pressure on a Chimney. Civil and Environmental Engineering,18(2) 507-514. DOI: 10.2478/cee-2022-0048
  20. Ikegaya, N., Hasegawa, S., Hagishima, A. 2018. Time-resolved particle image velocimetry for cross-ventilation flow of generic block sheltered by urban-like block arrays. Building and Environment, 147, 132-145. DOI: 10.1016/j.buildenv.2018.10.015
  21. Ikegaya, N., Kikumoto, H., Sasaki, K., Yamada, S., Matsui, M. 2022. Applications of wide-ranging PIV measurements for various turbulent statistics in artificial atmospheric turbulent flow in a wind tunnel. Building and Environment, 225, 109590. DOI: 10.1016/j.buildenv.2022.109590
  22. Jiang, Z., Kobayashi, T., Yamanaka, T., Sandberg, M. 2023. A literature review of cross ventilation in buildings. Energy and Buildings, 291, 113143. DOI: 10.1016/j.enbuild.2023.113143
  23. Jóźwiak, R., Kacprzyk, J., Zurański, J. 1995. Wind tunnel investigations of interference effects on pressure distribution on a building. Journal of Wind Engineering and Industrial Aerodynamics, 57(2-3), 159-166. DOI: 10.1016/0167-6105(95)00004-B
  24. Kim, W., Tamura, Y., Yoshida, A., Yi, H. 2017. Interference effects of an adjacent tall building with various sizes on local wind forces acting on a tall building. Advances in Structural Engineering. DOI: 10.1177/1369433217750170
  25. Li, J., Hu, S., Li, Q. 2020. Comparative study of full-scale and model-scale wind pressure measurements on a gable roof low-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104448. DOI: 10.1016/j.jweia.2020.104448
  26. Li, Y., Yin, J.-T., Chen, F.-B., Li, Q.-S. 2023. Machine learning-based prediction of wind forces on CAARC standard tall buildings. Wind and Structures, 36(6), 355–366. DOI: 10.12989/WAS.2023.36.6.355
  27. Litovko, B. M., Lider, M. Y. 2021. Analysis of Ways to Increase Energy Efficiency of Ventilation and Air Conditioning Systems. Visnyk of Vinnytsia Politechnical Institute, (4), 47–55. DOI: 10.31649/1997-9266-2021-157-4-47-55
  28. Myroniuk, K., Voznyak, O., Savchenko, O., Kasynets, M. 2023. Mathematical Modeling of an Air Flow Leakage with the Jets Interaction at the Variable Mode. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2022. EcoComfort 2022. Lecture Notes in Civil Engineering, vol 290. Springer, Cham. DOI: 10.1007/978-3-031-14141-6_29
  29. Nagar, S. K., Raj, R., Dev, N. 2022. Proximity effects between two plus-plan shaped high-rise buildings on mean and RMS pressure coefficients. Scientia Iranica, 29(3), 990-1005. DOI: 10.24200/sci.2021.55928.4484
  30. Perén, J., Van Hooff, T., Leite, B., Blocken, B. 2015. CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Building and Environment, 85, 263-276. DOI: 10.1016/j.buildenv.2014.12.007
  31. Potsis, T., Tominaga, Y., Stathopoulos, T. 2023. Computational wind engineering: 30 years of research progress in building structures and environment. Journal of Wind Engineering and Industrial Aerodynamics, 234, 105346. DOI: 10.1016/j.jweia.2023.105346
  32. Quan Y., Chen B., Gu M., Tamura Y. 2010. Effects of geometrical parameters on most unfavorable wind pressure coefficients on gable roofs of low-rise buildings[J]. Engineering Mechanics, 27(7), 142-147.
  33. Shen G., Li Y., Han K., Yu H., Shao J. 2023. Surface Wind Pressure and Aerodynamic Coefficients of Canopy Affiliated to High-rise Buildings Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 50 (7), 120-129. DOI: 10.16339/j.cnki.hdxbzkb.2023085
  34. Shirzadi, M., Naghashzadegan, M., A. Mirzaei, P. 2018. Improving the CFD modelling of cross-ventilation in highly-packed urban areas. Sustainable Cities and Society, 37, 451-465. DOI: 10.1016/j.scs.2017.11.020
  35. Shirzadi, M., Tominaga, Y., Mirzaei, P. A. 2019. Experimental study on cross-ventilation of a generic building in highly-dense urban areas: Impact of planar area density and wind direction. Journal of Wind Engineering and Industrial Aerodynamics, 196, 104030. DOI: 10.1016/j.jweia.2019.104030
  36. Shirzadi, M., Tominaga, Y., Mirzaei, P. A. 2019. Wind tunnel experiments on cross-ventilation flow of a generic sheltered building in urban areas. Building and Environment, 158, 60-72. DOI: 10.1016/j.buildenv.2019.04.057
  37. Škvorc, P., Kozmar, H. 2023. The effect of wind characteristics on tall buildings with porous double-skin façades. Journal of Building Engineering, 69, 106135. DOI: 10.1016/j.jobe.2023.106135
  38. Tominaga, Y., Blocken, B. 2016. Wind tunnel analysis of flow and dispersion in cross-ventilated isolated buildings: Impact of opening positions. Journal of Wind Engineering and Industrial Aerodynamics, 155, 74-88. DOI: 10.1016/j.jweia.2016.05.007
  39. Tong, Z., Chen, Y., Malkawi, A. 2016. Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design. Applied Energy, 182, 625-633. DOI: 10.1016/j.apenergy.2016.08.098
  40. Tong, Z., Chen, Y., Malkawi, A. 2017. Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology. Applied Energy, 193, 276-286. DOI: 10.1016/j.apenergy.2017.02.041
  41. Van Hooff, T., Blocken, B., Tominaga, Y. 2017. On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Building and Environment, 114, 148-165. DOI: 10.1016/j.buildenv.2016.12.019
  42. Vita, G., Shu, Z., Jesson, M., Quinn, A., Hemida, H., Sterling, M., & Baker, C. 2020. On the assessment of pedestrian distress in urban winds. Journal of Wind Engineering and Industrial Aerodynamics, 203, 104200. DOI: 10.1016/j.jweia.2020.104200
  43. Voznyak, O., Myroniuk, K., Spodyniuk, N., Sukholova, I., Dovbush, O., Kasynets, M. 2022. Air distribution in the room by swirl compact air jets at variable mode. Pollack Periodica, 17(3), 117-122. DOI: 10.1556/606.2022.00515
  44. Y. Zheng, S. Chen. 2011. Wind tunnel experimental study of Wind pressure distribution on tall buildings considering surrounding interference,” 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 5477-5480. DOI: 10.1109/CECNET.2011.5769416.
  45. Yuan, Y., Yan, B., Zhou, X., Yang, Q., Wei, M., He, Y., Zhou, X., Li, X. 2023. Twisted-wind effect on the aerodynamic force acting on varying side-ratios tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 240, 105481. DOI: 10.1016/j.jweia.2023.105481
  46. Zhai, Z., Johnson, M., Krarti, M. 2011. Assessment of natural and hybrid ventilation models in whole-building energy simulations. Energy and Buildings, 43(9), 2251-2261. DOI: 10.1016/j.enbuild.2011.06.026
  47. Zhang, X., Buddhika, J., Wang, J., Weerasuriya, A., Tse, K. 2023. Numerical investigation of effects of trees on cross-ventilation of an isolated building. Journal of Building Engineering, 73, 106808. DOI: 10.1016/j.jobe.2023.106808
  48. Zhao, L., Li, Y. 2023. Wind Load of Low-Rise Building Based on Fluent Equilibrium Atmospheric Boundary Layer. Tehnički vjesnik, 30 (4), 1274-1282. DOI: 10.17559/TV-20230205000324
  49. Zhelykh, V., Ulewicz, M., Furdas, Y., Adamski, M., Rebman, M. 2021. Investigation of Pressure Coefficient Distribution on the Surface of a Modular Building. Energies, 15(13), 4644. DOI: 10.3390/en15134644
  50. Zhong, H., Sun, Y., Shang, J., Qian, F., Zhao, F., Kikumoto, H., Jimenez-Bescos, C., Liu, X. 2022. Single-sided natural ventilation in buildings: A critical literature review. Building and Environment, 212, 108797. DOI: 10.1016/j.buildenv.2022.108797
DOI: https://doi.org/10.30657/pea.2024.30.5 | Journal eISSN: 2353-7779 | Journal ISSN: 2353-5156
Language: English
Page range: 57 - 66
Submitted on: Nov 20, 2023
Accepted on: Jan 18, 2024
Published on: Feb 22, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Khrystyna Myroniuk, Yurii Furdas, Vasyl Zhelykh, Yurii Yurkevych, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution 4.0 License.