Attaran, M., 2022. The Impact of Digital Twins on the Evolution of Intelligent Manufacturing and Industry 4.0. Advances in Computational Intelligence. DOI: 10.1007/s00542-021-06244-3.
Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M., Sapio, F., 2019. A conceptual architecture and model for smart manufacturing relying on service-based digital twins. In: 2019 IEEE International Conference on Web Services (ICWS). DOI: 10.1109/ICWS.2019.00032.
Chen, R., Huang, Y., Zhao, L., 2022. Digital Twin Applications: A Survey of Recent Advances and Challenges. Processes, 10(4), 589. DOI: 10.3390/pr10040589.
Ciano, M.P., Pozzi, R., Rossi, T., Strozzi, F., 2020. Digital twin-enabled smart industrial systems: A bibliometric review. International Journal of Computer Integrated Manufacturing. DOI: 10.1080/0951192X.2020.1852600.
Cimino, C., Negri, E., Fumagalli, L., 2019. Review of digital twin applications in manufacturing. Computers in Industry. DOI: 10.1016/j.compind.2019.103130.
Coelho, F., Relvas, S., Barbosa-Póvoa, A.P., 2021. Simulation-based decision support tool for in-house logistics: The basis for a digital twin. Computers and Industrial Engineering. DOI: 10.1016/j.cie.2020.107094.
Frantzén, M., Ng, A.H.C., Moore, P., 2011. A simulation-based scheduling system for real-time optimization and decision-making support. Robotics and Computer-Integrated Manufacturing, 27(4), 696–705. DOI: 10.1016/j.rcim.2010.12.001.
Karwat, B., Rubacha, P., Stańczyk, E., 2022. Numerical Simulations of the Exploitation Parameters of the Rotary Feeder. Management Systems in Production Engineering, 30(4), pp. 348-354. DOI: 10.2478/mspe-2022-0044.
Kusiak, A., 2020. Convolutional and generative adversarial neural networks in manufacturing. International Journal of Production Research, 58, 1594–1604. DOI: 10.1080/00207543.2019.1681537.
Lee, J., Kim, B.H., 2023. Digital Twin for Smart Steel Manufacturing. Journal of Industrial and Production Engineering. DOI: 10.1080/21681015.2022.2045421.
Mandolla, C., et al., 2022. Digital Twin Applications in Manufacturing: A Comprehensive Review. Journal of Manufacturing Systems. DOI: 10.1016/j.jmsy.2021.10.006.
Park, K.T., Lee, D., Do Noh, S., 2020. Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 791–814. DOI: 10.1007/s40684-020-00257-6.
Sari, M.W., Herianto, I.G.B.B., Dharma, A.E.T., 2022. Integrated Production System on Social Manufacturing: A Simulation Study. Management Systems in Production Engineering, 30(3), pp. 230-237. DOI: 10.2478/mspe-2022-0029.
Seňová, A., Pavolová, H., Škvareková, E., 2023. Assessment of the Impact of Working Risks in the Exploitation of Raw Materials. Management Systems in Production Engineering, 31(1), pp. 45-53. DOI: 10.2478/mspe-2023-0009.
Tan, X., Wang, Y., 2022. Digital Twin and Steel Manufacturing. International Journal of Production Research, 60(12), 3710-3722. DOI: 10.1080/00207543.2021.1956789.
Uhlenkamp, J.-F., Hribernik, K., Wellsandt, S., Thoben, K.-D., 2019. Digital twin applications: a first systemization of their dimensions. In: 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–8. DOI: 10.1109/ICE.2019.8792658.
Zheng, P., Wang, Z., Chen, C.H., Khoo, L.P., 2020. A Systematic Design Approach to Enhance the Development of Flexible and Robust Manufacturing Systems Using Digital Twin Technology. Computers & Industrial Engineering, 139, 106230. DOI: 10.1016/j.cie.2019.106230.